设{an}是一个数列,若在任一子列{ank}中均存在收敛子列{ankl},则{an}必为收敛列.
设数列{xn}满足xmn≤xm+xn,xn>0,证明:存在.
设函数f,g在[0,1]上连续,且存在包含于[0,1] 的数列{xn},使得对于任意n≥1,有f(xn)= g(xn+1).证明:存在ξ∈[0,1],使得 f(ξ)=g(ξ).
求极限:n[(1²+3²+⋯+(2n+1)²)/n³ -4/3]
设数列{xn}有界,且(xn+1-xn)=0,令 m=xn ,M=xn,m<M证明:在区间(m,M)上任意一个数都是此数列的一个子列的极限.
对于正项数列{an},如果有an+1/an=a,a>0,证明必有n√an=a.
设函数f∈C[0,1],记In=f(tn )dt(n≥1)证明:(1) In 存在,并且等于f(1).(2) 若f'(0)存在,则In=f(0)+1/n (f(t)-f(0))/t dt+o(1/n)
(1/(ex-1)-1/ln(1+x) )=______.
设y=y(x)由方程y²-x+siny=0(x≥1)确定,且y=y(x)经过(π²,π).试讨论y(x)在(1,+∞)上零点的个数,并求y(x).
设f(x)在[a,b)上严格单调,xn∈(a,b),证明:如果f(xn)=f(a),则xn=a.
设f(x),g(x)在(-∞,+∞)上连续,且[f(x)-g(x)]=0.证明:f(x)在(-∞,+∞)上一致连续当且仅当g(x)在(-∞,+∞)上一致连续.
函数f(x)=|x|1/(1-x)(x-2)的第一类间断点的个数是【 】
若((1+ax²)sinx-1)/x³=6,则a=______.