讨论级数
(-1)n/(1+x²)n
在(-∞,+∞)上的收敛性和一致收敛性.
对于正项数列{an},如果有an+1/an=a,a>0,证明必有n√an=a.
设f(x)=(x-x0 )n φ(x),其中n为正整数,φ(x)在x0连续且φ(x0 )≠0,讨论f(x)在x0处能否取极值?
设连续可微函数z=f(x,y)由方程F(xz-y,x-yz)=0唯一确定,其中f(u,v)有连续的偏导数,L为正向单位圆周.试求:I=∮L(xz²+2yz)dy-(2xz+yz²)dx
已知方程a1/(x-λ1 )+a2/(x-λ2 )+a3/(x-λ3 )=0其中a1,a2,a3>0,λ1<λ2<λ3.证明:此方程在区间(λ1,λ2)和(λ2,λ3)中各有一根.
如果函数列{fn(x)}在区间(a,c]和[c,b)上一致收敛,那么{fn(x)}在(a,b)上一致收敛.
证明:当x>0时,ln√x=1/(2n-1) ((x-1)/(1+x))2n-1 ,并讨论1/(2n-1) ((x-1)/(1+x))2n-1关于x∈(0,+∞)是否一致收敛.
设函数项级数ne-nx ,x∈(0,+∞).(1)证明此级数在(0,+∞)上收敛但不一致收敛;(2)求此级数的和函数;(3)给出数项级数n/e3n 的和.
已知含参变量积分F(x)=sin(xy)/(ln(lny)) dy,证明:(1) F(x)在[δ,+∞)上关于x一致收敛(δ>0)(2) F(x)在(0,+∞)上关于x不一致收敛.
已知{un(x)}是可微函数列,且un(x)在[a,b]上一致有界,证明:若un(x)收敛,则un(x)必定一致收敛.
解答如下问题:(1)证明:(-1)n n(n+1)/(n(n+1) x2+2n)关于x∈(-∞,+∞)一致收敛.(2)计算(-1)n n(n+1)/(n(n+1) x2+2n ).
求级数xn/(ln(n!))的收敛半径,并讨论收敛区间端点的收敛情况.
设数列{an}满足a1=1,(n+1) an+1=(n+1/2) an,证明:当|x|<1时,幂级数an xn 收敛,并求其和函数.
已知幂级数anxn的和函数为ln(2+x),则na2n =【 】
已知函数f(x)=x+1,若f(x)=a0/2+ancosnx,x∈[0,π],则n²sina2n-1 =______.
设级数an 绝对收敛,bn 收敛,且an =A,bn =B,令cn=a1bn+a2bn-1+⋯+an b1=akbn-k+1,则cn =AB.
设f(n)=a0+ak/nk ,且满足|a_k |≤M,这里n,k均为正整数,试证:数项级数f(n)收敛的充要条件为a0=a1=0.