已知L是第一象限中点从点(0,0)沿圆周x²+y²-2x=0到点(2,0),再沿圆周x²+y²=4到点(0,2)的曲线段,计算
I=∫L3x²ydydx+(x³+x-2y)dy
已知L是第一象限中点从点(0,0)沿圆周x²+y²-2x=0到点(2,0),再沿圆周x²+y²=4到点(0,2)的曲线段,计算
I=∫L3x²ydydx+(x³+x-2y)dy
解答过程见word版
计算曲线积分I=∫(4x-y)/(4x²+y² ) dx+(x+y)/(4x²+y² ) dy,其中I是曲线L:x²+y²=2,方向为逆时针方向.
设Σ为曲面z=(1≤x²+y²≤4)的下侧,f(x)是连续函数,计算I=∬Σ(xf(xy)+2x-y)dydz+(yf(xy)+2y+x)dzdx+(zf(xy)+z)dxdy.
计算∫L(x²+y²+z²)ds,其中L:x=acost,y=asint,z=bt,t∈[0,2π].
计算∫Γex(1-cosy)dx-ex(y-siny)dy,其中Γ:y=sinx,x∈[0,π],方向从(π,0)到(0,0).
设P=P(x,y,z),Q=Q(x,y,z)均为连续函数,Σ为曲面z=(x≤0,y≥0)的上侧,则∬ΣPdydz+Qdzdx=【 】
设平面有界区域D位于第一象限,由曲线xy=1/3,xy=3与直线y=1/3 x,y=3x围成,计算∬D(1+x-y)dxdy.
已知平面区域D={(x,y)|√(1-y²)≤x≤1,-1≤y≤1},计算∬Dx/√(x²+y²) dxdy.
已知有向曲线L为球面x²+y²+z²=2x与平面2x-z-1=0交线,从z轴正向往z轴负向看去为逆时针方向,计算曲线积分∫L(6xyz-yz²)dx+2x²zdy+xyzdz.
若D是由(0,0,1),(0,1,1),(1,1,1),(0,0,2),(0,2,2),(2,2,2)组成的R³的一个棱台,则∬D1/(y²+z²) dydz=________.
计算曲面积分∬Sxdydz+ydxdz+zdxdy=________,其中S:x²/a² +y²/b² +z²/c² ≤1,方向向外侧.
设连续可微函数z=f(x,y)由方程F(xz-y,x-yz)=0唯一确定,其中f(u,v)有连续的偏导数,L为正向单位圆周.试求:I=∮L(xz²+2yz)dy-(2xz+yz²)dx
设曲线积分∫L[f(x)-ex]sinydx-f(x)cosydy与路径无关,共中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于【 】
设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t恒有2xydx+Q(x,y)dy=2xydx+Q(x,y)dy,求Q(x,y).
计算曲线积分∮C(z-y)dx+(x-z)dy+(x-y)dz,其中C是曲线从z轴正向往z轴负向看,C的方向是顺时针的.
设L为椭圆x2/4+y2/3=1,其周长记为a,则∮L(2xy+3x2+4y2)ds=__________.
求I=∫L[exsiny-b(x+y)]dx+(excosy-ax)dy,其中a,b为常数,L为从点A(2a,0)沿曲线y=到点O(0,0)的弧.
求∫Cx2ds,其中C为x2+y2+z2=a2 (a>0)与z=的交线.