若矩阵A经初等变换化成B,则【 】
A、存在矩阵P,使得PA=B
B、存在矩阵P,使得BP=A
C、存在矩阵P,使得PB=A
D、方程组Ax=0与Bx=0同解
若矩阵A经初等变换化成B,则【 】
A、存在矩阵P,使得PA=B
B、存在矩阵P,使得BP=A
C、存在矩阵P,使得PB=A
D、方程组Ax=0与Bx=0同解
B
设A为2阶矩阵,P(α,Aα),其中α是非零向量且不是A的特征向量(1)证明P为可逆矩阵;(2)若A²α+Aα-6α=0,求P-1AP,并判断A是否相似于对角矩阵.
设A=,A*为A的伴随矩阵,则|(1/4 A)-1 - 15A* |=________.
设A是n阶正定矩阵,B为n阶实方阵,证明:(1)若B'=B,则AB的特征值为实数;(2)若B正定,则AB的特征值皆大于0;(3)若B正定,且AB=BA,则AB正定。
设A,B均为n阶实对称阵,A的特征值均小于a,B的特征值均小于b.证明:对任意的k>a+b,A+B-kE是负定矩阵.
设A是n阶正定矩阵,E是n阶单位矩阵,证明A+E的行列式大于1.
设A是n级实对称矩阵,证明rank(A)=n的充要条件是:存在实对称矩阵B使AB+B'A是正定矩阵。
设A为m×n且秩为s的矩阵,X为p×m的列满秩矩阵,即r(X)=m,而Y为n×q的行满秩矩阵,即r(Y)=n。证明:r(A)=r(XA)=r(AY)=r(XAY)其中符号r(T)表示矩阵T的秩。
设4阶矩阵B=,C=,且矩阵A满足关系式A(E-C-1 B)T CT=E,其中E为4阶单位矩阵,C-1表示 C的逆矩阵,CT表示 C的转置矩阵,将上述关系式化简并求矩阵A.
设=QR,其中Q是正交方阵,R是对角线元素大于0的上三角方阵,则R=________.
设A=,B=且A与B相似.(1)求α,β的值;(2)求可逆阵P使P-1 AP=B.
设α1,…,αn和β1,…,βn是线性空间V的两组基,V上的线性变换A把每个αi映成βi,i=1,…,n.证明:A在α1,…,αn下的矩阵和在β1,…,βn下的矩阵相等.
设A∈Rm×n,rankA=r,证明存在可逆矩阵M∈Rm×m及正交矩阵P∈Rn×n,使得MAP= 其中Rm×n表示 m×n实数矩阵空间,Ir表示r×r单位矩阵,C∈Rr×(n-r)。
设A=(aij)是n阶实对称正定矩阵,b1,b2,…,bn为任意非零实数,证明B=(aijbibj)也是正定的。