判断题(2024年安徽大学

设A是n维复线性空间V上的线性变换,n>1,若An=0,且An-1≠0,则存在两个A的非平凡子空间U和W,使得V=U⨁W.

答案解析

暂无答案

讨论

设V是欧氏空间,W是V的子空间,V中的向量α不在W中,问是否存在α0∈W,使得α-α0与W的任意向量都正交?如果不存在,举出例子;如果存在,说明理由并讨论其唯一性.

设V是n维线性空间,φ为V上的线性变换,且φ的特征多项式为f(x)=(x-λ1 )m1(x-λ2 )m2(λ1≠λ2)其中m1+m2=n.(1)证明:Ker((φ-λ1 E)m1)是φ的不变子空间,其中E是恒等变换;(2)证明:V=Ker((φ-λ1 E)m1)⨁Ker((φ-λ2 E)m2).

设α,β,γ 是有理数域上线性空间V中的向量,其中α≠0,假如存在V上的线性变换Γ,使得Γα=β,Γβ=α,Γγ=α-β.证明:α,β,γ在V中线性无关.

已知A,B,C是有限维线性空间上的三个线性变换,证明:A+B-ACB和A+B-BCA在该空间是同构的.

设A是n维欧氏空间V上的线性变换,在基α1,α2,⋯,αn下的矩阵为A.证明:A为对称变换的充要条件是AT G=GA,其中G=(αi,αj )为基α1,α2,⋯,αn的度量矩阵.

设α1=(1,0,0,3),α2=(1,1,-1,2),α3=(1,2,a-3,1),α4=(1,2,-2,a),β=(0,1,b,-1),问a,b为何值时(1) β能由α1,α2,α3,α4线性表示且表示唯一;(2) β不能由α1,α2,α3,α4线性表示;(3) β能由α1,α2,α3,α4线性表示但表示不唯一,并求一般表达式。

设对角矩阵A的特征多项式为 φ(λ)=(λ-λi)ni (诸λi两两互异),求所有和A可交换的矩阵全体所组成的线性空间的维数.

用数学归纳法证明:对于复n维空间Vn上任意多个两两可交换的线性变换所组成的集合S具有公共的特征向量.

设R2中的内积为(α,β)=α' Aβ,A=,则,在此内积之下的度量矩阵为________.

已知全体实的2维向量关于下列运算构成R上的线性空间V:(a1,b1 )+(a2,b2 )=(a1+a2,b1+b2+a1 a2),k∙(a,b)=(ka,kb+(k(k-1))/2 a2).(1)求V的一组基;(2)定义变换A(a,b)=(a,a+b),证明:A是一个线性变换;并求A在V的一组基下的矩阵表示.

已知直线L1:(x-a2)/a1 =(y-b2)/b1 =(2-c2)/c1 与直线L2:(x-a3)/a2 =(y-b3)/b2 =(2-c3)/c2 相交与一点,法向量αi=,i=1,2,3,则【 】

设向量α1=,α2=,α3=,若α1,α2,α3线性相关,且其中任意两个向量均线性无关,则ab=__________.

设向量α1=,α2=,α3=,若α1,α2,α3线性相关,且其中任意两个向量均线性无关,则【 】

设α1=,α2=,α3=,则三条直线a1 x+b1 y+c1=0,a2 x+b2 y+c2=0,a3 x+b3 y+c3=0,(其中ai2+bi2≠0,i=1,2,3)相交于一点的充要条件是【 】

设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明向量组α,Aα,…,Ak-1α是线性无关的.

设α1,α2,…,αr是n维向量.令β1=α2+α3+⋯+αr,β2=α1+α3+⋯+αr,…,βr=α1+α2+⋯+αr-1.证明向量组β1,β2,…,βr与向量组α1,α2,…,αr有相同的秩.

已知同维数的两个向量组有相同的秩,且其中之一可用另外一个线性表示,证明:这两个向量组等价。

已知A ̅和B ̅分别是三维空间中的矢量矩阵和单位方向矢量;A ̅=Ax+Ay+Az;( Ax=,Ay=,Az=B ̅=cosα+cosβ+cosγ;( cos2 α+cos2 β+cos2 γ=1)计算矩阵求和c=k(A ̅∙B ̅)k +2k (A ̅∙B ̅)2k.提示:首先考察(A ̅∙B ̅)2=?

在P[x]4定义内积:(f(x),g(x))=f(x)g(x) dx,f(x),g(x)∈P[x]4,并定义线性变换A:Aεi=ηi,i=1,2,3,4.ε1=1/2 (1+x+x2+x3 ),η1=2x+x2-x3 ε2=1/2 (-1-x+x2+x3 ),η2=-1-x2-2x3 ε3=1/2 (-1+x-x2+x3 ),η3=-2x-x2+x3 ε4=1/2 (-1+x+x2-x3 ),η4=1-4x-x2 求A的核空间的一个标准正交基.

设向量组A:α1,α2,… ,αs可以由向量组B:β1,β2,… ,βt线性表示且R(A)=R(B).证明向量组A与向量组B等价.