设A,B都为4阶复方阵,则A与B相似当仅当A与B有同的特征多项式,且每个特征值的几何重数(即对应特征子空间的维数)也相同.
设f(x)为实系数多项式,且次数为奇数,则 f(x)必有实根.
设λ-矩阵A(λ)=则A(λ)的所有不变因子为__________.
设R³为带标准内积的3维欧氏空间,对R³的基α1=(-1,1,1),α2=(0,-1,1),α3=(0,0,1)进行Schmidt正交化得R³的标准正交基β1,β2,β3,则β3=________.
设n阶矩阵A 的各行素之和均为3,E为单位阵则阵A²-2A +E的各行元素之和为______.
设A=(aij)为2阶复方阵,满足tr(Ak)=k(k=1,2),其中tr(A)=a11+a22为矩阵A的迹,则行列式|A|=______.
设A=,B=,C=若矩阵满足AXB=C,则X=________.
计算Gauss曲面积分I=∬Scos((n,r) ̂)/r² dS,其中S为光滑封闭曲面,原点不在S上,r为S上动点至原点的距离,(n,r) ̂为动点处外法向量n与径向r的夹角.
设A,B为2阶矩阵,且AB = BA,则“A有两个不相等的特征值”是“B可对角化”的【 】
设A为3阶矩阵,A=,则A的特征值为1,-1,0的充分必要条件是【 】
A为4阶方阵,其特征值为-1,1,2,3,A*为A的伴随矩阵,则|A*|=__________。
设A为数域P上的一个n级矩阵,如果f(A)=0,则称f(x)以A为根。次数最低首项为1的以A为根的多项式称为A的最小多项式,证明矩阵A的最小多项式是惟一的。
设A,B是n×n矩阵,φ(λ)为A的特征多项式,证明φ(B)是奇异矩阵的充要条件是A,B有公共的特征值。
三阶方阵A的特征值为1,-1,2,则A2+4A-1的特征值=________.
设σ为n维线性空间V的一个线性变换,σ2=σ,证明:(1)σ特征值为0,1;(2)设V0,V1分别为0,1对应的特征子空间,则V=V0⊕V1;(3)若σ只有0特征值,则σ为零变换.
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为ξ1=,ξ2=,ξ3=,又向量β=.(1)将β用ξ1,ξ2,ξ3线性表出;(2)求An β(n为自然数).