设
A=,B=,C=
若矩阵满足AXB=C,则X=________.
设二次型f(x1,x2 )=x1²-4x1 x2+4x2²经正交变换=Q化为二次型g(y1,y2 )=ay1²+4y1 y2+by2²,其中a≥b.(1)求a,b的值;(2)求正交矩阵Q.
证明:秩等于r的矩阵可以表示为r个秩等于1的矩阵之和,但不能表示为少于r个秩等于1的矩阵之和.
设A是n阶满秩矩阵,证明:存在正交矩阵P1,P2使得P1-1AP2=其中λi>0(i=1,2,⋯,n).
设A为4阶矩阵,A*为A的伴随矩阵,若A(A-A*)=0,且A≠A*,则r(A)取值为【 】
设A是秩为2的3阶矩阵,α是满足Aα=0的非零向量,若对满足βTα=0的3维向量β均有Aβ=β,则【 】
设A为2阶矩阵,P(α,Aα),其中α是非零向量且不是A的特征向量(1)证明P为可逆矩阵;(2)若A²α+Aα-6α=0,求P-1AP,并判断A是否相似于对角矩阵.
设A为3阶矩阵,A*为A的伴随矩阵,E为3阶单位矩阵.若r(2E-A)=1,r(E+A)=2,则|A* |=______.
假设A是2024阶方阵,主对角线上全是偶数,其余的都是奇数.证明:该矩阵为可逆矩阵.
设n阶矩阵A 的各行素之和均为3,E为单位阵则阵A²-2A +E的各行元素之和为______.
设A(λ),B(λ)都是数域P上m×n的λ矩阵,则A(λ),B(λ)等价的充要条件为A(λ)与B(λ)有相同的初等因子组.
设A为n阶复方阵,0为A的最小多项式m(λ)的r重根,r≥2为正整数.证明:(1)对任意的正整数k≥r,r(Ak )=r(Ar).(2) r(Ar )<r(Ar-1).
设α1,…,αn和β1,…,βn是线性空间V的两组基,V上的线性变换A把每个αi映成βi,i=1,…,n.证明:A在α1,…,αn下的矩阵和在β1,…,βn下的矩阵相等.
已知A=,B=满足(E-A-1B) XT=A-1(其中E为单位阵),试求X。
考虑循环矩阵A=证明:(1) A=a0 In+a1 T+a2 T2+⋯+an-1 Tn-1,其中T=In表示n×n单位矩阵。(2) T相似于对角矩阵。(3) A相似于对角矩阵。
设B为一r×r矩阵,C为一r×n矩阵.如果BC=C,问B=E是否成立?若成立,证明之;若不成立,举出反例,并给出使B=E的充要条件。其中E为单位矩阵.
设A是一个n×n实矩阵,秩(A)=1,证明A2=kA,其中k为一实数.
设n阶方阵A,B,C满足关系式ABC=E,其中E是n阶单位矩阵,则必有【 】
已知α=[1,2,3],β=[1,1/2,1/3],设A=αTβ,其中αT是α的转置,则An=________________.