设A为4阶矩阵,A*为A的伴随矩阵,若A(A-A*)=0,且A≠A*,则r(A)取值为【 】
A、0或1
B、1或3
C、2或3
D、1或2
设A为4阶矩阵,A*为A的伴随矩阵,若A(A-A*)=0,且A≠A*,则r(A)取值为【 】
A、0或1
B、1或3
C、2或3
D、1或2
D
【解析】
解答过程见word版
证明:秩等于r的矩阵可以表示为r个秩等于1的矩阵之和,但不能表示为少于r个秩等于1的矩阵之和.
设A是n阶满秩矩阵,证明:存在正交矩阵P1,P2使得P1-1AP2=其中λi>0(i=1,2,⋯,n).
设A,B都是n(n≥2)阶复方阵,则rank(AB)=rank(BA).
已知n阶矩阵A,B,C满足ABC=0,E是n阶单位矩阵,记矩阵,,的秩分别为γ1,γ2,γ3,则【 】
设A是n阶矩阵,A*为A的伴随矩阵,证明秩R(A*)与R(A)之间满足R(A* )=
设A为m×n且秩为s的矩阵,X为p×m的列满秩矩阵,即r(X)=m,而Y为n×q的行满秩矩阵,即r(Y)=n。证明:r(A)=r(XA)=r(AY)=r(XAY)其中符号r(T)表示矩阵T的秩。
设二次型f(x1,x2 )=x1²-4x1 x2+4x2²经正交变换=Q化为二次型g(y1,y2 )=ay1²+4y1 y2+by2²,其中a≥b.(1)求a,b的值;(2)求正交矩阵Q.
设A为3阶矩阵,交换A的第2行和第3行,再将第2列的-1倍加第1列,得到矩阵,则A-1的迹tr(A-1)=__________.
设A=,则A-1=__________,A2022=__________,A的最大奇异值σ1=__________.
若x=(-1,2,3,0,4),求‖x‖1,‖x‖2,‖x‖∞.
设B为一r×r矩阵,C为一r×n矩阵.如果BC=C,问B=E是否成立?若成立,证明之;若不成立,举出反例,并给出使B=E的充要条件。其中E为单位矩阵.
设A为2阶矩阵,P(α,Aα),其中α是非零向量且不是A的特征向量(1)证明P为可逆矩阵;(2)若A²α+Aα-6α=0,求P-1AP,并判断A是否相似于对角矩阵.
设矩阵A=仅有两个不同的特征值.若A相似于对角矩阵,求a,b的值,并求可逆矩阵P,使P-1AP为对角矩阵.
设矩阵T=,T以及D可逆,证明(A-BD-1 C)-1存在,并求T-1,其中A,B,C,D为适当维度的矩阵。
设A是n级实对称矩阵,证明rank(A)=n的充要条件是:存在实对称矩阵B使AB+B'A是正定矩阵。
设S1,S3为实对称矩阵,S2为实矩阵,则矩阵S=为正定矩阵的充要条件为矩阵S3与矩阵S1-S2 S3-1 S2'皆为正定矩阵。
设A为实对称矩阵。证明当实数t充分大之后,tI+A是正定矩阵,其中I表示单位矩阵。
设A,B,C,D都是n×n矩阵,且|A|≠0,AC=CA,证明=|AD-CB|.