设A,B为2阶矩阵,且AB = BA,则“A有两个不相等的特征值”是“B可对角化”的【 】
A、充分必要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件
设A,B为2阶矩阵,且AB = BA,则“A有两个不相等的特征值”是“B可对角化”的【 】
A、充分必要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件
B
【解析】
解答过程见word版
设A为3阶矩阵,A=,则A的特征值为1,-1,0的充分必要条件是【 】
设矩阵A满足:对任意x1,x2,x3均有A=(1)求A.(2)求可逆矩阵P与对角矩阵A,使得P-1AP=Λ.
设A为n×n复矩阵,证明:存在一个n维向量α,使α,Aα,…,An-1α线性无关的充要条件是A的每个特征向量值恰有一个线性无关的特征向量。
三阶方阵A的特征值为1,-1,2,则A2+4A-1的特征值=________.
设σ为n维线性空间V的一个线性变换,σ2=σ,证明:(1)σ特征值为0,1;(2)设V0,V1分别为0,1对应的特征子空间,则V=V0⊕V1;(3)若σ只有0特征值,则σ为零变换.
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值____________.
设A为数域P上的一个n级矩阵,如果f(A)=0,则称f(x)以A为根。次数最低首项为1的以A为根的多项式称为A的最小多项式,证明矩阵A的最小多项式是惟一的。
设3阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为ξ1=,ξ2=,ξ3=,又向量β=.(1)将β用ξ1,ξ2,ξ3线性表出;(2)求An β(n为自然数).
设3阶实对称矩阵A的特征值为λ1=-1,λ2=λ3=1,对应于λ1的特征向量为ξ1=(0,1,1)T,求A.
已知ξ=是矩阵A=的一个特征向量.(1)试确定参数a,b及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
设二次型f(x1,x2 )=x1²-4x1 x2+4x2²经正交变换=Q化为二次型g(y1,y2 )=ay1²+4y1 y2+by2²,其中a≥b.(1)求a,b的值;(2)求正交矩阵Q.
设=QR,其中Q是正交方阵,R是对角线元素大于0的上三角方阵,则R=________.
设α1,…,αn和β1,…,βn是线性空间V的两组基,V上的线性变换A把每个αi映成βi,i=1,…,n.证明:A在α1,…,αn下的矩阵和在β1,…,βn下的矩阵相等.
设A=(aij)是n阶实对称正定矩阵,b1,b2,…,bn为任意非零实数,证明B=(aijbibj)也是正定的。
设A为任一n阶矩阵,数λ>0,证明λI+AT A为正定矩阵。
设A∈Rm×n,rankA=r,证明存在可逆矩阵M∈Rm×m及正交矩阵P∈Rn×n,使得MAP= 其中Rm×n表示 m×n实数矩阵空间,Ir表示r×r单位矩阵,C∈Rr×(n-r)。