证明题(2024年安徽大学

设A是n维欧氏空间V上的线性变换,在基α12,⋯,αn下的矩阵为A.证明:A为对称变换的充要条件是AT G=GA,其中G=(αij )为基α12,⋯,αn的度量矩阵.

答案解析

暂无答案

讨论

设V是欧氏空间,W是V的子空间,V中的向量α不在W中,问是否存在α0∈W,使得α-α0与W的任意向量都正交?如果不存在,举出例子;如果存在,说明理由并讨论其唯一性.

设V是n维线性空间,φ为V上的线性变换,且φ的特征多项式为f(x)=(x-λ1 )m1(x-λ2 )m2(λ1≠λ2)其中m1+m2=n.(1)证明:Ker((φ-λ1 E)m1)是φ的不变子空间,其中E是恒等变换;(2)证明:V=Ker((φ-λ1 E)m1)⨁Ker((φ-λ2 E)m2).

设α,β,γ 是有理数域上线性空间V中的向量,其中α≠0,假如存在V上的线性变换Γ,使得Γα=β,Γβ=α,Γγ=α-β.证明:α,β,γ在V中线性无关.

已知A,B,C是有限维线性空间上的三个线性变换,证明:A+B-ACB和A+B-BCA在该空间是同构的.

设R³为带标准内积的3维欧氏空间,对R³的基α1=(-1,1,1),α2=(0,-1,1),α3=(0,0,1)进行Schmidt正交化得R³的标准正交基β1,β2,β3,则β3=________.

设R^3上的线性变换A(x)=x,则α=生成的A-循环不变空间的维数为________.

设A是n阶复方阵,V1是A的行向量生成的Cn的子空间,V2是A的列向量生成的Cn的子空间,则V1=V2.

设A是n维线性空间V的线性变换,则V=ImA⊕KerA.

设A=(aij)n×n是一个由±1组成的n×n方阵(n>1).将A的n个行向量记为v1,…,vn.对于两个行行向量v=(ai)1≤i≤n与v'=(bi)1≤i≤n,定义v*v'=(aibi)1≤i≤n以及v∙v'=aibi假设:(1)对任意的i,j(1≤i,j≤n),存在k(1≤k≤n)使得vi*vj=vk;(2)对任意的i,j(1≤i,j≤n,i≠j), vi∙vj=0.证明:(i) A有一个行向量;对于A的另外任意一个行向量v_i,它有n/2个分量为1,n/2个分量为-1.(ii)n是2的幂.(ii)设n=2m,则可以通过重新排列A的行与列,将A变为方阵这里,X⨂m==是方阵X的m次张量积:两个方阵X=(xij)1≤i,j≤p与Y=(yi'j')1≤i',j'≤q的张量积被定义为一个pq×pq方阵X⨂Y=(zkl)1≤kl≤pq其中zkl=xijyi'j',整数i,j,i',j'满足1≤i,j≤p,1≤i',j'<q,且由等式k=p(i'-1)+i与l=p(j'-1)+j唯一确定.

已知三维向量空间的基底为α1=(1,1,0)T,α2=(1,0,1)T,α3=(0,1,1)T,则向量β=(2,0,0)T在此基底下的坐标是____________.