设向量α1=,α2=,α3=,若α1,α2,α3线性相关,且其中任意两个向量均线性无关,则ab=__________.
某物体以速度v(t)=t+ksinπt做直线运动,若它从t=0到t=3的时间段内平均速度是5/2,则k=__________.
已知函数f(x)=x²(ex+1),则f(5)(1)=___________.
微分方程y'=1/(x+y)² 满足 y(1)=0的解为___________.
函数f(x,y)=2x³-9x²-6y4+12x+24y的极值点是__________.
曲线y²=x在点(0,0)处的曲率圆方程为____________________.
设A,B为2阶矩阵,且AB = BA,则“A有两个不相等的特征值”是“B可对角化”的【 】
设V是欧氏空间,W是V的子空间,V中的向量α不在W中,问是否存在α0∈W,使得α-α0与W的任意向量都正交?如果不存在,举出例子;如果存在,说明理由并讨论其唯一性.
设α1,α2,…,αr是n维向量.令β1=α2+α3+⋯+αr,β2=α1+α3+⋯+αr,…,βr=α1+α2+⋯+αr-1.证明向量组β1,β2,…,βr与向量组α1,α2,…,αr有相同的秩.
设对角矩阵A的特征多项式为 φ(λ)=(λ-λi)ni (诸λi两两互异),求所有和A可交换的矩阵全体所组成的线性空间的维数.
用数学归纳法证明:对于复n维空间Vn上任意多个两两可交换的线性变换所组成的集合S具有公共的特征向量.
设R2中的内积为(α,β)=α' Aβ,A=,则,在此内积之下的度量矩阵为________.