某物体以速度v(t)=t+ksinπt做直线运动,若它从t=0到t=3的时间段内平均速度是5/2,则k=__________.
设t>0,平面有界区域D由曲线y=√x ex与直线x=t,x=2t及x轴围成,D绕x轴旋转一周所成旋转体的体积为V(t),求V(t)的最大值.
求由圆柱面x2+y2=a2,x2+z2=a2 (a>0)所围立体的体积.
设位于点(0,1)的质点A对质点M的引力大小为k/r2 (k>0,为常数,r为质点A与M之间的距离),质点M沿曲线y=自B(2,0)运动到O(0,0),求在此运动过程中质点A对质点M的引力所做的功.
求由曲线y=1+sinx与直线y=0,x=0,x=π围成的曲边梯形绕x轴旋转而成的旋转体体积V.
求过曲线y=-x2+1上的一点,使过该点的切线与这条曲线及x,y轴在第一象限围成图形的面积最小,最小面积是多少?
由曲线y=sin3/2x (0≤x≤π)与x轴围成的平面绕x轴旋转而的旋转体的体积为【 】
双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为【 】
曲线y=cosx(-π/2≤x≤π/2)与x轴所围成的图形,绕x轴旋转一周所成的旋转体的体积为【 】
设抛物线y=ax2+bx+c过原点,当0≤x≤1时,y≥0.又已知抛物线与x轴及直线x=1所围成图形的面积为1/3,试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
过点P(1,0)作抛物线y=的切线,该切线与抛物线及x轴围成一个平面图形.求此平面图形绕x轴旋转一周所成旋转体的体积.
设函数f(x)在(-∞,+∞)上有二阶连续导数,证明:f'' (x)≥0的充要条件是:对任意不同的实数a,b,f((a+b)/2)≤1/(b-a)f(x)dx.
求曲线L:y=1/3 x3+2x(0≤x≤1)绕直线y=4/3 x旋转一周生成的旋转曲面的面积.
已知平面区域D={(x,y)|0≤y≤1/(x),x≥1}.(1)求D的面积;(2)求D绕x轴旋转所成旋转体的体积.
设f(x)=t|t|dt.求曲线y=f(x)与x轴所围成封闭图形的面积.
点A位于半径为a的圆周内部,且离圆心的距离为b(0≤b<a),从点A向圆周上所有点的切线作垂线,求所有垂足所围成的图形的面积.
(1)证明初值问题与y(x)=y0+f[t,y(t)]dt等价;(2)若对上式中的积分用辛普生公式,试导出相应的计算格式;并针对初值问题给出计算格式。