如图,在锐角△ABC中,H是垂心,D是边BC上任意一点,点E,F分别在边AB,AC上,满足A,B,D,F和A,C,D,E共圆,线段BF与CE交于点P,L是AH上的一点,且LC与△PBC的外接圆相切,BH,CP交于点X,求证:D,X,L三点共线.
如图,在锐角△ABC中,H是垂心,D是边BC上任意一点,点E,F分别在边AB,AC上,满足A,B,D,F和A,C,D,E共圆,线段BF与CE交于点P,L是AH上的一点,且LC与△PBC的外接圆相切,BH,CP交于点X,求证:D,X,L三点共线.
解答过程见word版
在锐角三角形△ABC中,AB>AC,O为外心. 设D为BC上一点,O1,O2分别为△ABD,△ACD的外心,△AO1O2的外接圆与⨀O交于不同于A的点L.证明:A,O,D三点共线当且仅当AL//BC.
如图,AB是⊙O的直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.
在△ABC中,AB=1,AC=3,∠BAC=π/2,半径为r>0的圆与边AB,AC相切,且也内切于△ABC的外接圆,则r的值为__________.
设由圆外一点作一切线一割线,证明此切线为割线及其圆外线分的比例中率.
设一圆之半径为 25 尺,其外切四边形之圆界为 400 尺,试求此四边形之面积。
设P为平面凸多边形,若线段AB的两端点在P的边界上,并且过A,B与AB垂直的两条直线之间的区域(含边界)包含P,则称线段AB为“锦弦”. 求最大的正整数k,使得任意平面凸多边形P都有k条锦弦.
求最大的正整数n,使得平面上存在n个点P1,P2,⋯,Pn(任意三点不共线)和不过其中任意点的n条直线l1,l2,⋯,ln(任意三线不共点),满足对任意i≠j,直线Pi Pj,li,lj三线共点.
于四边形之内,取一点不在两对角线之交点之上者,试证明从此点至各顶点之距离之和大于两对角线之和.
PQRS为平面四边形,QR=1,∠PQR= ∠QRS= 70°,∠PQS=15°,∠PRS= 40°.若∠RPS=θ.PQ=α,PS=β,则4αβsinθ属于下列哪个区间【 】
设G为半径为R的圆,G1,G2,⋯,Gn为半径为r的圆,已知G1,G2,⋯,Gn均外切于G,对于i=1,2,⋯,n-1,Gi与Gi+1外切,且Gn与G1外切,则下列叙述正确的有【 】