若f在[a,b]上连续,则f在[a,b]上有界.
若f:Rn→Rm是一个C1类映射,且满足xf'=0,证明:f为常值映射.
设级数an 绝对收敛,bn 收敛,且an =A,bn =B,令cn=a1bn+a2bn-1+⋯+an b1=akbn-k+1,则cn =AB.
证明:(f(x0+h)-f(x0-k))/(k+h)存在的充要条件为f在x0处可导.
设数列{xn}满足xmn≤xm+xn,xn>0,证明:存在.
计算曲面积分∬Sxdydz+ydxdz+zdxdy=________,其中S:x²/a² +y²/b² +z²/c² ≤1,方向向外侧.
若D是由(0,0,1),(0,1,1),(1,1,1),(0,0,2),(0,2,2),(2,2,2)组成的R³的一个棱台,则∬D1/(y²+z²) dydz=________.
求x²+y²=2az和x²+xy+y²=a²的交线的最大值为________.
若f(x)=,求在(0,0)处(cosα,sinα)'的方向导数为________.
若f(x)=|x|α,求(∂² f)/(∂x1² )+(∂² f)/(∂x2² )+(∂² f)/(∂x3² )+⋯+(∂² f)/(∂xn² )=________.
设f(x)在[a,b)上严格单调,xn∈(a,b),证明:如果f(xn)=f(a),则xn=a.
设f(x),g(x)在(-∞,+∞)上连续,且[f(x)-g(x)]=0.证明:f(x)在(-∞,+∞)上一致连续当且仅当g(x)在(-∞,+∞)上一致连续.
函数f(x)=|x|1/(1-x)(x-2)的第一类间断点的个数是【 】
设函数f(x)=(1+x)/(1+nx2n),则f(x)【 】
设f(x)=在x=0处连续,则常数a与b应满足的关系是__________.
设F(x)=,其中f(x)在x=0处可导,f' (0)≠0,f(0)=0,则x=0是F(x)的【 】
试问函数f(x,y)=sin[π/(1-x2-y2 )]在区域D:{(x,y)∈R2;x2+y2<1}上是否一致连续?证明你的结论.
若函数f(x)在[0,1]上连续,f(0)=0,f(1)=1,则对任何自然数n≥1,存在ξ_n∈[0,1],使得f(ξn+1/n)=f(ξn )+1/n.
已知函数f(x)在[a,+∞)上连续,且f(x)存在,证明:(1)函数f(x)有界;(2)存在ξ∈[a,+∞),使得f(ξ)为f(x)在[a,+∞)上的最大值或最小值.