设二元函数f(x,y)在(x0,y0)的某邻域U内有定义,且在U内存在偏导数.
证明:若偏导数fx(x,y)和fy(x,y)都在(x0,y0)可微,则fxy (x0,y0 )=fyx (x0,y0).
设二元函数f(x,y)在(x0,y0)的某邻域U内有定义,且在U内存在偏导数.
证明:若偏导数fx(x,y)和fy(x,y)都在(x0,y0)可微,则fxy (x0,y0 )=fyx (x0,y0).
暂无答案
设f(x)在(-∞,+∞)上可导,且对任意实数x有f(x)=f(x+2k)=f(x+b),其中k为正整数,b为正无理数,用Fourier级数理论证明f(x)为常数.
设f:[0,1]→(0,+∞)为连续函数,常数a≥1.证明:=a+1.
设α,β是任意非零实数,对正整数n,证明: =其中=α(α-1)⋯(α-k+1)/k!,=1.
(1)证明:方程(x+1)x+1=exx有唯一正根.(2)若β为(1)中方程的根,计算极限(β+1/n)(β+2/n)⋯(β+n/n).
设I(x0,x1 )=∬Σ/dydz,其中Σ为抛物面x=y²+z²与平面x=x0,x=x1所围立体表面的内侧,α>0,x1>x0>0,求极限I(x0,x1).
设函数f(x,y)=ext²dt,则∂²f/∂x∂y|(1,1)=______
设u=u(x,y,z),v=v(x,y,z),w=w(x,y,z)由x=u+v+w,y=uv+uw+vw,z=uvw确定,求∂u/∂x,∂u/∂y,∂u/∂z.
设函数f(u,v)具有2阶连续偏导数,且df|(1,1)=3du+4dv,令y=f(cosx,1+x²),则d²y/dx²|x=0=______.
若f(x)=|x|α,求(∂² f)/(∂x1² )+(∂² f)/(∂x2² )+(∂² f)/(∂x3² )+⋯+(∂² f)/(∂xn² )=________.
设φ(t),ψ(t)有二阶连续导数,u=φ(y/x)+xψ(y/x),求:x2 ∂2u/∂x2+2xy ∂2u)/∂x∂y+y2 ∂2u/∂y2.
设u=e-xsin(x/y),则∂2u)/∂x∂y在点(2,1/π)处的值为________.
设f(u)可导,z=xyf(y/x),若x ∂z/∂x+y ∂z/∂y=xy(lny-lnx),则【 】