对任意的x>0,y∈R,证明:xy≤xlnx-x+ey.
(1)证明:方程(x+1)x+1=exx有唯一正根.(2)若β为(1)中方程的根,计算极限(β+1/n)(β+2/n)⋯(β+n/n).
设I(x0,x1 )=∬Σ/dydz,其中Σ为抛物面x=y²+z²与平面x=x0,x=x1所围立体表面的内侧,α>0,x1>x0>0,求极限I(x0,x1).
求极限(-cotx/e-2x +1/e-xsin²x -1/x²)
设函数f∈C[0,1],记In=f(tn )dt(n≥1)证明:(1) In 存在,并且等于f(1).(2) 若f'(0)存在,则In=f(0)+1/n (f(t)-f(0))/t dt+o(1/n)
设函数f:[0,1]→R是连续的且在(0,1)上可微,若f满足:(1) f(0)=0;(2)存在常数M>0使得|f'(x)|≤M|f(x)|对任意x∈(0,1)成立.证明:在[0,1]上f(x)=0.
曲线y²=x在点(0,0)处的曲率圆方程为____________________.
函数f(x,y)=2x³-9x²-6y4+12x+24y的极值点是__________.
某产品的价格函数为p=,(p为单价,单位:万元;Q为产量,单位:件),总成本函数为C=150+5Q+0.25Q²(万元),则经营该产品可获得的最大利润为______(万元).
已知方程a1/(x-λ1 )+a2/(x-λ2 )+a3/(x-λ3 )=0其中a1,a2,a3>0,λ1<λ2<λ3.证明:此方程在区间(λ1,λ2)和(λ2,λ3)中各有一根.
设f(x)=(x-x0 )n φ(x),其中n为正整数,φ(x)在x0连续且φ(x0 )≠0,讨论f(x)在x0处能否取极值?
设函数f(x)在闭区间[a,]连续,f(a)=f(b)=0,f'(a)·f'(b)>0,证明:函数f(x)在开区间(a,b)内至少有一个零点。