已知(x-1)²+y²=25的圆心与抛物线y²=2px(p>0)的焦点重合,A为两曲线的交点,则原点到直线AF的距离为______.
已知(x-1)²+y²=25的圆心与抛物线y²=2px(p>0)的焦点重合,A为两曲线的交点,则原点到直线AF的距离为______.
0.8
【解析】
解答过程见word版
抛物线C:y²=4x的准线为l,P为C上的动点,过P作⨀A:x²+(y-4)²=1的一条切线,Q为切点,过P作l的垂线,垂足为B,则【 】
若集合{(x,y)│y=x+t(x²-x),0≤t≤1,1≤x≤2}表示的图形中,两点间最大的距离为d,面积为S,则【 】
已知抛物线y²=4x上有一点P到准线的距离为9,那么点P到x轴的距离为______.
设S为抛物线y2=4x的焦点,过点P(-2,1)做抛物线的切线,切点分别为P1与P2,线段SP1上的点Q1与线段SP2上的点Q2满足PQ1⊥SP1,PQ2⊥SP2,则以下说法正确的是【 】
试证在抛物线正焦弦两端点所作切线互相垂直,又若此抛物线之方程式为x²=2px,试求其在上述二切线为坐标轴时之新方程式.
F 点为抛物线 y² = 16x 之焦点,O 点为顶点,P 点为抛物线上任一点,PQ 为切线,自 O 点至 PQ 线之垂线与 FP 线相交 R 点,求 R 点之轨迹之方程式并绘其图形.
已知曲线C:x²+y²=16(y>0),从C上任意一点P向x轴作垂线段PP',P'为垂足,则线段PP'的中点M的轨迹方程为【 】
在平面直角坐标系xOy中,椭圆x²/a² +y²/b² =1(a>b>1)的右焦点为F(c,0),若存在经过焦点F的一条直线l交椭圆于A,B两点,使得OA⊥OB.求椭圆的离心率e=c/a的取值范围.
已知双曲线的两个焦点分别为(0,4),(0,-4),点(-6,4)在该双曲线上,则该双曲线的离心率为【 】
已知双曲线x²/4-y²=1,则过点(3,0)且和双曲线只有一个交点的直线的斜率为______.
已知双曲线x²/a² -y²/b² =1(a>0,b>0)的左右焦点分别为F1,F2,P是双曲线右支上一点,且直线PF2的斜率为2,△PF1 F2是面积为8的直角三角形,则双曲线的方程为【 】
如图,给出定点A(a,0)(a>0)和直线l:x=-1.B是直线l上的动点,∠BOA的平分线交AB于点C.求点C的轨迹方程,并讨论方程表示的曲线类型与a值的关系.
已知b是a,c的等差中项,直线ax+by+c=0与圆x²+y²+4y-1=0交于A,B两点,则|AB|的最小值为【 】
已知直线ax+y+2-a与圆C:x²+y²+4y-1=0交于A,B两点,则|AB|的最小值为【 】
求圆x²+y²-2x+6y=0的圆心到x-y+2=0的距离【 】
如果实数x,y满足等式(x-2)2+y2=3,那么y/x的最大值是【 】
圆x2 + 2x + y2 + 4y - 3 = 0上到直线x + y + 1 = 0的距离为的点共有【 】个。
圆心在抛物线y2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是【 】
一动圆与两圆: x2 + y2 = 1和x2 + y2 - 8x + 12 = 0 都外切,则动圆圆心的轨迹为【 】
设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3 : 1,在满足条件①②的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
设圆过双曲线x2/9 - y2/16=1的一个顶点和-一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是________.