单项选择(2020年山东省

设集合 A = {x | 1 ⩽ x ⩽ 3}, B = {x | 2 < x < 4}, 则 A ∪ B =【 】

A、 {x | 2 < x ⩽ 3}

B、{x | 2 ⩽ x ⩽ 3}

C、{x | 1 ⩽ x < 4}

D、{x | 1 < x < 4}

答案解析

C

讨论

设集合A={1,2},B={2,4,6},则A∪B=【 】

已知集合 U = {−2, −1, 0, 1, 2, 3}, A = {−1, 0, 1}, B = {1, 2}, 则 CU (A ∪ B) =【 】

设集合A={-1,0,1},B={1,3,5},C={0,2,4},则(A∩B)∪C=【 】

已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=【 】

设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A ̅∪B ̅=【 】

设全集I为自然数集N,E={2n|n∈N},F={4n|n∈N},那么集合N可以表示成【 】

设 A 表示有理数的集合, B 表示无理数的集合,即设 A ={有理数} , B ={无理数},试写出:1. A∪B ; 2 . A∩B .

某中学开展劳动实习, 学生加工制作零件, 零件的截面如图所示. O 为圆孔及轮廓圆弧 AB 所在圆的圆心, A 是圆弧 AB 与直线 AG 的切点, B 是圆弧 AB 与直线 BC 的切点, 四边形 DEFG 为矩形, BC⊥DG, 垂足为 C, tan∠ODC = 3/5, BH//DG, EF = 12cm, DE = 2cm, A 到直线 DE 和 EF 的距离均为 7 cm, 圆孔半径为 1 cm, 则图中阴影部分的面积为 __________c㎡.

为加强环境保护, 治理空气污染, 环境监测部门对某市空气质量进行调研, 随机抽查了 100 天空气中的 PM2.5和SO2 浓度 (单位: ug/m3), 得下表:(1) 估计事件“该市一天空气中 PM2.5 浓度不超过 75, 且SO2 浓度不超过 150”的概率;(2) 根据所给数据, 完成下面的 2 × 2 列联表:(3) 根据 (2) 中的列联表, 判断是否有 99% 的把握认为该市一天空气中 PM2.5 浓度与SO2 浓度有关?附:

已知曲线 C : mx2 + ny2 = 1. 【 】

设集合A={0,-a},B={1,a-2,2a-2},若A⊆B,则a=【 】

Given a positive integer n, a set S is n-admissible if①each element of S is an unordered triple of integers in {1,2,⋯,n},②|S|=n-2,and③for each 1≤k≤n-2 and each choice of k distinct A1,A2,⋯,Ak∈S,|A1∪A2∪⋯∪Ak |≥k+2Is it true that, for all n>3 and for each n-admissible set S, there exist pairwise distinct points P1,P2,⋯,Pn in the plane such that the angles of the triangle Pi Pj Pk are all less than 61° for any triple {i,j,k} in S?【译】给定正整数n,称集合S是n-可行,如果其满足以下条件:①S的每个元素都是{1,2,⋯,n}的三元子集;②|S|=n-2;③对任意的1≤k≤n-2和任意k个互不相同的A1,A2,⋯,Ak∈S,都有|A1∪A2∪⋯∪Ak |≥k+2判断以下命题是否为真:对所有n>3和所有的n-可行集合S,在平面内总存在n个互不相同的点P1,P2,⋯,Pn,使得对集合S中任意元素{i,j,k},三角形Pi Pj Pk的每个内角都小于61°.

设含有10个元素的集合的全部子集数为S,其中由个元素组成的子集数为T,则T/S的值为________.

对任意一个非零复数z,定义集合Mz={ω|ω=z2n-1,n∈N}.(Ⅰ)设α是方程x+1/x=的一个根,试用列举法表示集合Mα,若在Mα中任取两位数,求其和为零的概率P;(Ⅱ)设复数ω∈Mz,求证Mω⊆Mz.

设整数m≥2.设集合A由有限个整数(不一定为正)构成,且B1,B2,…,Bm是A的子集.假设对任意k=1,2,…,m,Bk中所有元素之和为mk.证明:A包含至少m/2个元素.

Find all the groups of positive integers (a,b,p) satisfying p is a prime number and ap=b!+p.译文:求所有正整数组(a,b,p),满足:p为素数且ap=b!+p.

设a,b是正整数,证明:在区间[b2/(a2+ab),b2/(a2+ab-1))上不存在正整数.

323 与 221 之最大公约数为______.

S是集合{1,2,…,2023}的子集,满足任意两个元素的平方和不是9的倍数,则|S|的最大值是______(这里|S|表示S的元素个数).

某校举办数学文化节,据统计当天共有980多(不少于980,小于990)名同学进校参观,每位同学进校参观一段时间后离开(之后不会再进来).若无论这些同学以怎样的时间安排参观,我们都能找到k位同学,使得要么这k位同学在某个时间都在校园内参观,要么任何时间他们中都没有两个人同时在校园内参观.求k的最大值.