问答题(2019年广东省广州市

如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=(n-3)/x的图象相交于A,P两点.

(1)求m,n的值与A的坐标;

(2)求证:△CPD∼△AEO;

(3)求sin∠CDB的值.

答案解析

解答过程见word版

讨论

某蓄电池的电压为48V,使用此电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为I=48/R.当R=12Ω时,I的值为______A.

点(1,y1 ),(2,y2 ),(3,y3 ),(4,y4)在反比例函数y=4/x图像上,则y1,y2,y3,y4中最小的是【 】

如图,Rt△OAB与Rt△OBC位于平面直角坐标系中,∠AOB=∠BOC=30°,BA⊥OA,CB⊥OB,若AB=√3,反比例函数y=k/x(k≠0)恰好过点C,则k=________.

如图,在平面直角坐标素中,O(0,0),A(3,1),B(1,2),反比例函数y=k/x(k≠0)的图像过▱OABC的顶点C,则k=______.

如图,已知直角三角形ABC中AO=1,将△ABC绕O点旋转至△A'B'O的位置,且A'在OB中点,B'在反比例函数y=k/x上,则k的值为________.

反比例函数y=6/x的图像一定经过的点是【 】

如图,已知A(-4,1/2),B(-1,2)是一次函数y=kx+b(k≠0)与反比例函数y=m/x(m≠0,x<0)图像的两个交点, AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图像直接回答:在第二象限内,当x取何值时,一次函数的值大于反比例函数的值?(2)求一次函数的解析式及m的值;(3) P是线段AB上一点,连接PC,PD,若△PCA与△PDB的面积相等,求点P的坐标.

如图,反比例函数y=k/x (k≠0,x>0)的图像与直线y=3x相交于点C,过直线上点A(1,3)作AB⊥x轴于点B,交反比例函数图像于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.

如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=2/x(x>0)相交于P(1,m).(1)求k的值;(2)若点Q与点P关于y=x成轴对称,则点Q的坐标为Q( );(3)若过P、Q两点的抛物线与y轴的交点为N(0,5/3),求该抛物线的解析式,并求出抛物线的对称轴方程.

如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2/x(k2≠0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为【 】

已知一次函数y=kx+b的图像经过点(0,1)与点(2,5),求该一次函数的表达式.

水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长 C与r的关系式为C=2πr下列判断正确的是【 】

物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系:x 0 2 5y 15 19 25(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.

已知k1<0<k2,则是函数y=k1 x-1和y=k2/x的图像大致是【 】

【背景:缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”。深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图1,某商场为迎接即将到来的618优惠节,采购了若干辆购物车。 【素材】如图为购物车叠放在一起的示意图2,若一辆购物车车身长lm,每增加一辆购物车,车身增加0.2m.解决问题:【任务1】若某商场采购了n辆购物车,求车身总长L与购物车辆数n的表达式;【任务2】若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为 2.6m,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?【任务3】若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?

已知正比例函数y1=ax的图象经过点(1,-1),反比例函数y2=b/x的图象位于第一、三象限,则一次函数y=ax+b的图象一定不经过【 】

因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2 (元)与该水果的质量x(千克)之间的函数解析式y2=10x(x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?

一个人的脚印信息往往对应着这个人某些方面的基本特征,某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如下表:脚长x(cm) ⋯ 23 24 25 26 27 28 ⋯身高y(cm) ⋯ 156 163 170 177 184 191 ⋯ (1)在左图中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=k/x(k≠0)中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如右图,某场所发现了一个人的脚印,脚长约为25.8cm,根据(2)中求出的函数解析式,估计这个人的身高.

点(3,-5)在正比例函数y=kx(k≠0)的图象上,则k的值为【 】

一次函数y=-3x+1的图象过点(x1,y1 ),(x1+1,y2 ),(x1+2,y3),则【 】

如图,在▱ABCD 中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.

如图,在▱ABCD中,一定正确的是【 】

菱形的边长为5,则它的周长为______.

如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a个单位长度得到线段EF,若四边形ECDF为菱形时,a的值为【 】

(1)如图1,在矩形ABCD中,E为AD边上一点,连接BE,①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≅△FCB;②若SABCD=20时,BE⋅CF=________.(2)如图2,在菱形ABCD中,cosA=1/3,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD于点F,若SABCD=24,求EF∙BC的值.(3)如图3,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF∙EG=7√3,请直接写出AG的长.

以下说法正确的是【 】

(1) 发现:如图1所示,在正方形 ABCD 中,E为AD 边上一点,将△AEB 沿BE 翻折到△BEF 处,延长EF交CD 边于点G.求证:△BFG≌△BCG.(2) 探究:如图2,在矩形ABCD中,E为AD 边上一点,且AD=8,AB=6.将△AEB 沿BE 翻折到△BEF处,延长EF交BC边于点G,延长BF交CD边于点H,且FH=CH,求AE的长.(3) 拓展:如图3,在菱形ABCD中,E为CD 边上的三等分点,∠D=60°。将△ADE沿AE 翻折得到△AFE,直线EF交BC于点P,求PC的长.

在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形,∴DC//AB∴∠ECO = ______.∵EF垂直平分AC,∵________.又∠EOC = ______,∴△COE≌△AOF (ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线________________.

如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E的形状是___________.

如图,已知▱ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD于点F,求证:△AFD≌△EFC.