单项选择(2022年广东省广州市

点(3,-5)在正比例函数y=kx(k≠0)的图象上,则k的值为【 】

A、-15

B、15

C、-3/5

D、-5/3

答案解析

D

【解析】

将(3,-5)代入函数y=kx,

得:-5=3x

解得:k=-5/3.

讨论

代数式1/√(x+1) 意义时,x应满足的条件为【 】

下列图形中,是中心对称图形的是【 】

如图是一个几何体的侧面展开图,这个几何体可以是【 】

已知抛物线G:y=ax²-6ax-a³+2a²+1(a>0)过点A(x1,2)和点B(x2,2),直线l:y=m² x+n过点C(3,1),交线段AB于点D,记△CDA的周长为c1,△CDB的周长为c2,且c1=c2+2.(1)求抛物线G的对称轴;(2)求m的值;(3)直线l以每秒3°的速度顺时针旋转t秒后(0≤t<45)得到直线l',当l'∥AB时,l'交抛物线G于E,F两点.①求t的值;②设△AEF的面积为S,若对任意的a>0,均有S≥k成立,求k的最大值及此时抛物线G的解析式.

如图,在菱形ABCD中,∠C=120°,点E在射线BC上运动(不与点B,C重合),△AEB关于AE的轴对称图形为△AEF.(1)当∠BAF=30°时,试判断线段AF和线段AD的数量和位置关系,并说明理由;(2)若AB=6+6√3,⨀O是△AEF的外接圆,设⨀O的半径为r,①求r的取值范围;②连接FD,直线FD能否与⨀O相切?如果能,求BE的长度;如果不能,请说明理由.

一个人的脚印信息往往对应着这个人某些方面的基本特征,某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如下表:脚长x(cm) ⋯ 23 24 25 26 27 28 ⋯身高y(cm) ⋯ 156 163 170 177 184 191 ⋯ (1)在左图中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=k/x(k≠0)中选择一个函数模型,使它能近似地反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如右图,某场所发现了一个人的脚印,脚长约为25.8cm,根据(2)中求出的函数解析式,估计这个人的身高.

2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面,某校综合实践小组制作了一个“着上组合体”的模拟装置,如图,在一次试验中,该模拟装置在缓速下降阶段从A点垂直下降到B点,再垂直下降到着陆点C,从B点测得地面D点的俯角为36.87°,AD=17米,BD=10米.(1)求CD的长;(2)若模拟装置从A点以每秒2米的速度匀速下降到B点,求模拟装置从A点下降到B点的时间.(参考数据:sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75)

善于提问是应用人工智能解决问题的重要因素之一.为了解同学们的提问水平,对A,B两组同学进行问卷调查,并根据结果对每名同学的提问水平进行评分,得分情况如下(单位:分):A组 75 78 82 82 84 86 87 88 93 95B组 75 77 80 83 85 86 88 88 92 96(1)求A组同学得分的中位数和众数;(2)现从A、B两组得分超过90分的4名同学中随机抽取2名同学参与访谈,求这2名同学恰好来自同一组的概率.

关于x的方程x²-2x+4-m=0有两个不等的实数根.(1)求m的取值范围;(2)化简:(1-m²)/|m-3|÷(m-1)/2⋅(m-3)/(m+1).

在Rt△ABC中,∠B=90°.(1)尺规作图:作AC边上的中线BO(保留作图痕迹,不写作法);(2)在(1)所作的图中,将中线BO绕点O逆时针旋转180°得到DO,连接AD,CD.求证:四边形ABCD是矩形.

已知一次函数y=kx+b的图像经过点(0,1)与点(2,5),求该一次函数的表达式.

水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长 C与r的关系式为C=2πr下列判断正确的是【 】

物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系:x 0 2 5y 15 19 25(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.

已知k1<0<k2,则是函数y=k1 x-1和y=k2/x的图像大致是【 】

【背景:缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”。深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图1,某商场为迎接即将到来的618优惠节,采购了若干辆购物车。 【素材】如图为购物车叠放在一起的示意图2,若一辆购物车车身长lm,每增加一辆购物车,车身增加0.2m.解决问题:【任务1】若某商场采购了n辆购物车,求车身总长L与购物车辆数n的表达式;【任务2】若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为 2.6m,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?【任务3】若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?

已知正比例函数y1=ax的图象经过点(1,-1),反比例函数y2=b/x的图象位于第一、三象限,则一次函数y=ax+b的图象一定不经过【 】

因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2 (元)与该水果的质量x(千克)之间的函数解析式y2=10x(x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?

已知点A(,m),B(3/2,n)在一次函数y=2x+1的图像上,则m与n的大小关系是【 】

某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成下图中的射线l1,射线l2分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资y1(单位:元)和y2(单位:元)与其当月鲜花销售量x(单位:千克)( x≥0)的函数关系. (1)分别求y1,y2与x的函数解析式(解析式也称表达式);(2)若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元,这个公司采用了哪种方案给这名销售人员付3月份的工资?

把函数y=x向上平移3个单位,下列在该平移后的直线上的点是【 】

如图,抛物线y=ax²+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为【 】

某蓄电池的电压为48V,使用此电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为I=48/R.当R=12Ω时,I的值为______A.

2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F. (1)当旋转角∠EOF为多少度时,OE=OF;(直接写出结果,不要求写解答过程);(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别为S1,S2,设S=S1-S2,AN=n,求S关于n的函数表达式.

在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是【 】

点(1,y1 ),(2,y2 ),(3,y3 ),(4,y4)在反比例函数y=4/x图像上,则y1,y2,y3,y4中最小的是【 】

sin30°的值为______.

如图,抛物线y=x²+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ//BC,交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点的坐标.

爬坡时坡面与水平面夹角为α,则每爬1m耗能(1.025-cosα)J,若某人爬了1000m,该坡角为30°,则他耗能【 】(参考数据:√3≈1.732,√2≈1.414)

如下左图,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP长与运动时间t(单位:s)的关系如右图,则AC的长为【 】