填空题(2023年广东省

某蓄电池的电压为48V,使用此电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为I=48/R.当R=12Ω时,I的值为______A.

答案解析

4

讨论

根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(㎡)的反比例函数,其函数图象如图所示,当S=0.25㎡时,该物体承受的压强p的值为______Pa.

在平面直角坐标系xOy中,若点A(2,y1),B(5,y2)在反比例函数y=k/x(k>0)的图像上,则y1 _____ y2(填“>”“=”或“<”).

如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=1/x的图像经过点C,y=k/x(k≠0)的图像经过点B.若OC=AC,则k=________.

如图,双曲线y=k/x经过Rt△OBC斜边上的点A,且满足AO/AB=2/3,与BC交于点D,S△BOD=21,则k=________.

如图,已知点A在反比例函数y=k/x(x<0)上,作Rt△ABC,点D为斜边AC的中点,连接DB并延长交y轴于点E.若△BCE的面积为8,则k=________.

如图,A,B是函数y=12/x上两点,P为一动点,作PY//y轴,PA//x轴,下列说法正确的是【 】①△AOP≅△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16.

如图,在平面直角坐标系中,一次函数y=1/2x+5和y=﹣2x的图像相交于点A,反比例函数y=k/x的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=1/2x+5的图像与反比例函数y=k/x的图像的另一个交点为B,OB,求△ABO的面积.

已知反比例函数解析式y=k/x的图象经过(1,-2),则k=________.

如图,直线y=2x-6与反比例函数y=k/x(x>0)的图像交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标; (2)在ⅹ轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

如图所示,点P(3a,a)是反比例函数y=k/x(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为【 】

已知一次函数y=kx+b的图像经过点(0,1)与点(2,5),求该一次函数的表达式.

2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F. (1)当旋转角∠EOF为多少度时,OE=OF;(直接写出结果,不要求写解答过程);(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别为S1,S2,设S=S1-S2,AN=n,求S关于n的函数表达式.

李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元。根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?

如图,点P(a,3)在抛物线C:y=4-(6-x)2上,且在C的对称轴右侧. (1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P',C',平移该胶片使C'所在抛物线对应的函数恰为y=-x2+6x-9.求点P'移动的最短路程.

下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务。用函数观点认识一元二次方程根的情况:我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图像(称为抛物线)与x轴交点的横坐标,抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点,与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根,因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(-b/2a,(4ac-b2)/4a)和一元二次方程根的判别式∆=b2-4ac,分a>0和a<0两种情况进行分析:(1) a>0时,抛物线开口向上.①当∆=b2-4ac>0时,有4ac-b2<0.∵a>0,∴顶点纵坐标(4ac-b2)/4a<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图).②当∆=b2-4ac=0时,有4ac-b2=0.∵a>0,∴顶点纵坐标(4ac-b2)/4a=0∴顶点在x轴上,抛物线与x轴有一个交点(如图).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当∆=b2-4ac<0时,.....(2) a<0时,抛物线开口向下……任务:(1)上面小论文中的分析过程,主要运用的数学思想是______(从下面选项中选出两个即可);A.数形结合 B.统计思想 C.分类讨论 D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,∆<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为__________.

如图,二次函数y=-1/4 x2+3/2 x+4的图像与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图像上的一个动点,高点P的横坐标为m,过点P作PD⊥x轴于点D,作直线BC交PD于点E. (1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过P作直线l//AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CD=FD,若存在,请直接写出m的值;若不存在,请说明理由.

如图1,抛物线y=ax2+2x+c经过点A(-1,0),C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D. (1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当PD/AD的值最大且△APQ是直角三角形时,求点Q的横坐标; (4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI//y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y轴上时,请直接写出点G的坐标。

如图,抛物线y=x2-x-3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.直线l与抛物线交于A,D两点,与y轴交于点E,点D的坐标为(4,-3). (1)请直接写出A,B两点的坐标及直线l的函数表达式;(2)若点P是抛物线上的点,点P的横坐标为 (m≥0),过点P作PM⊥x轴,垂足为M.PM与直线l交于点N,当点N是线段PM的三等分点时,求点P的坐标;(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.

若二次函数y=ax2+bx+c的图像与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2 ),且经过点A(0,2),过点A的直线l与x轴交于点C,与该函数的图像交于点B (异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=5/21.(1)抛物线的开口方向______(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.