问答题(1998年理工数学Ⅰ

已知线性方程组

(I)

的一个基础解系为(b11,b12,…,b1 2n)T,(b21,b22,…,b2 2n)T,…,(bn1,bn2,…,bn 2n)T,试写出线性方程组

(II)

有通解,并说明理由.

答案解析

(Ⅱ)的通解为y=C1(a11,a12,…,a1 2n)T+C2(a21,a22,…,a2 2n)T+⋯+Cn(an1,an2,…,an 2n)T,其中C1,C2,…,Cn为任意常数.理由:方程组(Ⅰ)、(Ⅱ)的系数矩阵分别记为A,B,则由题设可知ABT=0,于是BAT=ABT...

查看完整答案

讨论

设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0,证明向量组α,Aα,…,Ak-1α是线性无关的.

已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4,可以经过正交变换=P化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.

设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积.(2)又设f(x)在区间(0,1)内可导,且f'(x)>-2f(x)/x,证明(1)中的x0是唯一的.

设正向数列{an}单调减少,且(-1)nan 发散,试问级数(1/(an+1))n 是否收敛?并说明理由.

求⁡[sin⁡(π/n)/(n+1)+sin(2π/n)/(n+1/2)+⋯+sinπ/(n+1/n)]

计算曲面积分I=∬Σ (axdydz+(z+a)2dxdy)/(x2+y2+z2 )1/2 ,其中Σ为下半球面z=-的上侧,a为大于零的常数.

从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为k(k>0).试建立y与v所满足的微分方程,并求出函数关系式 y= y(v).

确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x4+y2 )λ i-x2 (x4+y2 )λ j为某二元函数u(x,y)的梯度,并求u(x,y).

求直线l:(x-1)/1=y/1=(z-1)/-1在平面π:x-y+2z-1=0上的投影直线l0的方程,并求l0绕y轴旋转一周所成曲面的方程.

设A,B是两个随机事件,且0<P(A)<1,P(B│A)=P(B|A ̅),则必有【 】