计算题(2004年春电子科技大学

求方程uxx+10uxy+9uyy=0的通解.

答案解析

特征方程为(y')2-10y'+9=0,则y-x=0或y-9x=0.

令ξ=y-x,η=y-9x,得uξη=0

u=f(y-x)+g(y-9x).

讨论

差分方程△yt = t的通解为____________________.

设物体A从点(0,1)出发,以速度大小为常数v沿y轴正向运动,物体B从点(-1,0)与A同时出发,其速度大小为2v,方向始终指向A,试建立物体B的运动轨迹所满足的微分方程,并写出初始条件.

在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为 N,在 t= 0 时刻已掌握新技术的人数为x0,在任意时刻t 已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人收和未掌握新技术人数之积成正比,比例常数k>0,求x(t).

从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为k(k>0).试建立y与v所满足的微分方程,并求出函数关系式 y= y(v).

若连续函数f(x)满足关系式f(x)=f(t/2)dt+ln2,则f(x)等于【 】

设f(x)在含节点xi (i=0,…,n)的区间[a,b]上n+1次可微,Pn (x)是f(x)关于给定的n+1个节点的n次插值多项式,证明:对于任意x∈[a,b],存在与x有关的ξ∈(a,b),使得f(x)-Pn (x)=f(n+1) (ξ))/(n+1)!· (x-x0 )(x-x1 )…(x-xn).

设x0,x1,…,xn为n+1个互异的插值节点,li (x)(i=0,1,…,n)为拉格朗日基本插值多项式(也称为插值基本函数)。证明:(1) li (x)≡1;(2) li (x)xik≡xk.

数值求积f(x)dx时(1)试写出直接用梯形公式的计算式T1;(2)将[a,b]n等分,用Tn表示用复化梯形公式求得的积分值,试写出Tn的计算式;(3)若将步长分半(即步长二分),试给出T2n与Tn的递推关系;(4)若用精度控制|T2n - Tn |<ε,试写出“变步长梯形法”的算法框图.

设线性方程组Ax=b的系数矩阵A=。(1)试求能使Jacobi迭代法收敛的a的取值范围;(2)对该方程组写出Jacobi迭代格式(设b=(b1,b2,b3)T已知)。

对方程组,试问用Jacobi迭代和Gauss-Seidel迭代是否收敛?为什么?