单项选择(2024年经济数学Ⅲ

设随机变量X的概率密度为f(x)=,则X的三阶中心矩E(X-EX)³=【 】

A、-1/32

B、0

C、1/16

D、1/2

答案解析

B

【解析】

解答过程见word版

讨论

设X服从区间(-π/2,π/2)的均匀分布,Y=sinX,则Cov(X,Y)=________.

设随机变量X的概率密度为f(x)=,在X=x(0<x<1)的条件下,随机变量Y服从区间(x,1)上的均匀分布,则Cov(X,Y)=【 】

某种原材料一天的消耗量是一个随机变量,概率密度函数为f(x)=,设每天的消耗量是相互独立的,分别求:两天的消耗量X和三天的消耗量Y的概率密度函数。

设随机变量X,Y相互独立,其概率密度函数分别为:fX (x)=,fY(y)= 求Z=2X+Y的概率密度函数.

设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.

已知随机变量X的概率密度函数f(x)=1/2 e-|x|,-∞<x<+∞,则X的概率分布函数F(x)=____________.

设随机变量X与Y独立,X服从正态分布N(μ,σ2),Y服从[-π,π]上的均匀分布,试求Z=X+Y的概率分布密度(计算结果用标准正态分布函数Φ(x)表示,其中Φ(x)=dt).

设ξ,η是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为P{ξ=i}=1/3,i=1,2,3,又设X=max⁡(ξ,η),Y=min⁡(ξ,η).(1)写出二维随机变量(X,Y)的分布律;(2)求随机变量X的数学期望E(X).

设随机变量X1,X2,…,Xn独立同分布,且X1的4阶矩阵存在.设μk=E(X1k)(k=1,2,3,4),则由切比雪夫不等式,对∀ε>0,有P{|1/n Xi2 -μ2 |≥ϵ}≤【 】

任意取定两个正的真分数,求它们的乘积不大于1/4的概率。