设随机变量X的概率密度为f(x)=,在X=x(0<x<1)的条件下,随机变量Y服从区间(x,1)上的均匀分布,则Cov(X,Y)=【 】
A、-1/36
B、-1/72
C、1/72
D、1/36
设随机变量X的概率密度为f(x)=,在X=x(0<x<1)的条件下,随机变量Y服从区间(x,1)上的均匀分布,则Cov(X,Y)=【 】
A、-1/36
B、-1/72
C、1/72
D、1/36
D
【解析】
解答过程见word版
设X服从区间(-π/2,π/2)的均匀分布,Y=sinX,则Cov(X,Y)=________.
设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为________.
设两个随机变量X、Y相互独立,且都服从均值为0、方差为1/2的正态分布,求随机变量|X-Y|的方差.
随机变量ξ在(1,6)上服从均匀分布,则方程x2+ξx+1=0有实根的概率是______.
设二维随机变量(X,Y)在区域D:0<x<1,|y|<x内服从均匀分布,求关于X的边缘概率密度函数及随机变量Z=2X+1的方差D(Z).
设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则【 】
设随机变量X~N(0,4),随机变量Y~B(3 ,1/3),且X与Y不相关,则D(X-3Y+1)=【 】
某种原材料一天的消耗量是一个随机变量,概率密度函数为f(x)=,设每天的消耗量是相互独立的,分别求:两天的消耗量X和三天的消耗量Y的概率密度函数。
设随机变量X,Y相互独立,其概率密度函数分别为:fX (x)=,fY(y)= 求Z=2X+Y的概率密度函数.
设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为√2的正态分布,而Y服从标准正态分布,试求随机变量Z=2X-Y+3的概率密度函数.
设二维随机变量(X,Y)的概率分布为X\Y 0 1 2-1 0.1 0.1 b1 a 0.1 0.1若事件{max(X,Y)=2}与事件{min(X,Y)=1}相互独立,则Cov(X,Y)=【 】
设函数f(x)在区间(-1,1)内有定义,且f(x)=0,则【 】
设函数f(x,y)在点(0,0)处可微,f(0,0)=0,n= (∂f/∂x,∂f/∂y,-1)|(0,0),非零向量r与n垂直,则【 】
设A,B,C为三个随机事件,且P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/12,则A,B,C中恰有一个事件发生的概率为【 】
设X1,X2,⋯,X100为来自总体X的简单随机样本,其中P{X=0}=P{X=1}=1/2,Φ(x)表示标准正态分布函数,则利用中心极限定理可得P{Xi≤55}的近似值为【 】
设ξ,η是两个相互独立且均服从正态分布N(0,1/2)的随机变量,则随机变量|ξ-η|的数学期望E(|ξ-η|)=________.
从学校乘汽车到火车站的途中有3个交通岗,假设在各交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
设随机变量X~N(0,1),在X=x条件下,随机变量Y~N(x,1),则X与Y的相关系数为【 】
设随机变量X服从参数为1的泊松分布,则E(|X-EX|)=【 】
设二维随机变量(X,Y)的概率密度为f(x,y)=(Ⅰ)求X与Y的方差;(Ⅱ)X与Y是否相互独立;(Ⅲ)求Z=X²+Y²的概率密度.
随机变量X密度函数为f(x)=试求:(1)A值 (2)X的分布函数F(x) (3) E=(1/X2 ) (4) D(X)
设随机变量X服从均值为10,均方差为0.02的正态分布,已知Φ(x)=du, Φ(2.5)=0.9938,则X落在区间(9.95,10.05)内的概率为______.
已知离散型随机变量X服从参数为2的泊松分布,即P{X=k}=2ke-2/k!,k=0,1,2,…,则随机变量Z=3X-2的期望E(Z)=________.
设随机变量X服从参数为1的指数分布,则数学期望E(X+e-2X )=__________.
设随机变量X服从(0,2)上的均匀分布,则随机变量Y=X2在(0,4)内的概率分布密度fY(y)=__________.