设二次型f(x1,x2,x3 )=xT Ax在正交变换下可化成y1²-2y2²+3y3²,则二次型f的矩阵A的行列式值与迹分别为【 】
A、-6,-2
B、6,-2
C、-6,2
D、6,2
设二次型f(x1,x2,x3 )=xT Ax在正交变换下可化成y1²-2y2²+3y3²,则二次型f的矩阵A的行列式值与迹分别为【 】
A、-6,-2
B、6,-2
C、-6,2
D、6,2
C
【解析】
由题意知,A的特征值为1,-2,3,
故|A|=1×(-2)×3=-6,tr(A)=1+(-2)+3=2.
设函数f(x)=(1+x)/(1+nx2n),则f(x)【 】
已知数列{xn },{yn },{zn}满足x0=-1,y0=0,z0=2,且,记αn=,写出满足αn=Aαn-1的矩阵A,并求An及xn,yn,zn.
已知有向曲线L为球面x²+y²+z²=2x与平面2x-z-1=0交线,从z轴正向往z轴负向看去为逆时针方向,计算曲线积分∫L(6xyz-yz²)dx+2x²zdy+xyzdz.
已知平面区域D={(x,y)|√(1-y²)≤x≤1,-1≤y≤1},计算∬Dx/√(x²+y²) dxdy.
设随机试验每次成功的概率为P,现进行3次独立重复试验,在至少成功1次的条件下,3次试验全部成功的概率为4/13,则P=______.
已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4,可以经过正交变换=P化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
已知二次型f(x1,x2,x3 )=ijxixj.(1)求二次型矩阵.(2)求正交矩阵Q,使得二次型经正交变换x=Qy化为标准形.(3)求f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3 )=2x12+3x22++3x32+2ax2 x3 (a>0)通过正交变换化成标准形f=y12+2y22+5y32,求参数a及所用的正交变换矩阵.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1 x2+4x1 x3-8x2 x3成标准形.
已知二次型f(x1,x2,x3 )=3x12+4x22+3x32+2x1 x3,(1)求正交变换x=Qy将f(x1,x2,x3)化为标准形;(2)证明minx≠0f(x)/(xT x)=2.
二次型f(x1,x2,x3 )=(x1+x2 )2+(x1+x3 )2-4(x2-x3 )2的规范型为【 】
二次型f(x1,x2,x3 ) = (x1 + x2)2 + (x2 + x3)2 - (x3 - x1)2的正惯性指数依次为【 】
随机变量X,Y相互独立,其X~N(0,2),Y~N(-1,1),记p1={2X>Y},p2={X-2Y>1},则【 】
当x→0时,((1+t²)sint²)/(1+cost²) dt与xk是等阶无穷小,则k=______.
函数f(x,y)=2x³-9x²-6y4+12x+24y的极值点是______.
某产品的价格函数为p=,(p为单价,单位:万元;Q为产量,单位:件),总成本函数为C=150+5Q+0.25Q²(万元),则经营该产品可获得的最大利润为______(万元).
设t>0,平面有界区域D由曲线y=xe-2x与直线x=t,x=2t及x轴围成,D的面积为S(t),求S(t)的最大值.
设函数z=z(x,y)由方程z+ex-yln(1+z²)=0确定,求(∂²z/∂x²+∂²z/∂y²)|(0,0).
设矩阵A=,B=,向量α=,β=.(1)证明:方程组Ax=α的解均为方程组Bx=β的解;(2)若方程组Ax=α与方程组Bx=β不同解,求a的值.
设随机变量序列X1,X2,…,Xn,…独立同分布,且X1的概率密度为f(x)=,则当n→∞时,1/n Xi2 依概率收敛于【 】