设随机试验每次成功的概率为P,现进行3次独立重复试验,在至少成功1次的条件下,3次试验全部成功的概率为4/13,则P=______.
设随机试验每次成功的概率为P,现进行3次独立重复试验,在至少成功1次的条件下,3次试验全部成功的概率为4/13,则P=______.
2/3
【解析】
解答过程见word版
设实矩阵A=,若对任意实向量α=,β=,(αTAβ)²≤αTAα∙βTAβ都成立,则a的取值范围是________.
微分方程y'=1/(x+y)² 满足条件y(1)=0的解为__________.
已知函数f(x)=x+1,若f(x)=a0/2+ancosnx,x∈[0,π],则n²sina2n-1 =______.
设函数f(u,v)具有2阶连续偏导数,且df|(1,1)=3du+4dv,令y=f(cosx,1+x²),则d²y/dx²|x=0=______.
若((1+ax²)sinx-1)/x³=6,则a=______.
设随机变量X,Y相互独立,且均服从参数为λ的指数分布,令Z=|X-Y|,则下列随机变量与Z同分布的是【 】
设随机变量X的概率密度为f(x)=,在X=x(0<x<1)的条件下,随机变量Y服从区间(x,1)上的均匀分布,则Cov(X,Y)=【 】
设随机变量X,Y相互独立,且X服从正态分布N(0,2),Y服从正态分布N(-2,2),若P{2X+Y<a}=P{X>Y},则a=【 】
设A,B,C为三个随机事件,且P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/12,则A,B,C中恰有一个事件发生的概率为【 】
一批产品共有10个正品和2个次品,任意抽取两次,每次抽1个,抽出后不再放回,则第二次抽出的是次品的概率为__________.
已知A,B两个事件满足条件P(AB)=P(A ̅B ̅),且P(A)=p,则P(B)=________.
袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第2个人取行得黄球的概率是________.
一个盒子中有4个球,分别标有号码0、1、1、2。现从该盒子中有返回地抽取2个球,设X为两个球上号码的乘积,求:X的分布律。
设在一次试验中,事件A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为__________;而事件A至多发生一次的概率为__________.
设随机事件A,B及其和事件A∪B的概率分别是0.4,0.3,0.6,若B ̅表示B的对立事件,那么积事件AB ̅的概率P(AB ̅ )=________.
随机地向半圆0<y<(a为常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积与正比,则原点和该点的连续与x轴的夹角小于π/4的概率为__________.
设工厂A 和工厂B的产品的次品率分别为1% 和 2%,现从由 A 厂和 B厂的产品分别占60% 和 40% 的一批产品中随机抽取一件,发现是次品,则该次品属 A厂生产的概率是________.
设A,B,C满足:A,B互不相容,A,C互不相容,B,C相互独立,P(A)=P(B)=P(C)=1/3,则P[(B∪C)│(A∪B∪C) ]=__________.
设随机变量X与Y相互独立,且X~B(1,1/3),Y~(2,1/2),则P{X=Y}=______.
甲袋中有2个红球3个白球,乙袋中也有2个红球3个白球,现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取2个球。求最后取出的2个球全是白球的概率。
已知随机事件A的概率P(A)=0.5,随机事件B的概率P(B)=0.6以及条件概率P(B|A)=0.8,则和事件A∪B的概率P(A∪B)=______.
甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为______.
已知P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/6,则事件A,B,C全不发生的概率为__________.
设A,B为两事件,且P(A)=1/2,P(B)=1/3,P(A│B)=1/6,则P(A ̅│B ̅ )=【 】