平面内⊙O的半径1,点P到O的距离为2,过点P可作⊙O的切线的条数为【 】
A、0条
B、1条
C、2条
D、无数条
平面内⊙O的半径1,点P到O的距离为2,过点P可作⊙O的切线的条数为【 】
A、0条
B、1条
C、2条
D、无数条
C
【解析】
∵点P到O的距离d>r,
∴点P在⊙O之外,
∴过点P可以做圆O的2条切线.
如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线垂直,垂足为D.连接并延长BC,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.
已知△ABE为直角三角形,∠ABE=90°,BC为圆O的切线,C为切点,CA=CD,则△ABC和△CDE的面积之比为【 】
如图,AB为⊙O的直径,直线 CD与⊙O 相切于点 C,连接AC,若∠ACD=50°,则∠BAC 的度数为【 】
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.
如图,点P是四边形ABCD外接圆⊙O上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD,连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF=________.
如图,已知AB=AC=5,BC=3,以A,B两点为圆心,大于1/2 AB的长为半径画圆弧,两弧相交于两点M,N,连接MN与AC相交于点D,则△BCD的周长为【 】
学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12.下列关于这组数据描述正确的是【 】
已知正比例函数y1=ax的图象经过点(1,-1),反比例函数y2=b/x的图象位于第一、三象限,则一次函数y=ax+b的图象一定不经过【 】
如图,海中有一小岛A,在B点测得小岛A在北偏东30°方向上,渔船从B点出发由西向东航行10n mile到达C点,在C点测得小岛A恰好在正北方向上,此时渔船与小岛A的距离为【 】n mile.