证明题(2014年广东省

如图,☉O是△ABC的外接圆,AC是直径。过点O作线段OD⊥AB于点D,延长DO交☉O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于点F,连接PF.

(1)若∠POC=60°,AC=12,求劣弧PC的长(结果保留π);

(2)求证:OD=OE;

(3)求证:PF是☉O的切线.

答案解析

解答过程见word版

讨论

综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A'.连接AA'交BD于点E,连接CA'. (1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⨀O与CD相切,求证:AA'=√3 CA';②如图3,⨀O与CA'相切,AD=1,求⨀O的面积.

如图,在单位长度为1的网格中,点O,A,B均在格点上,OA=3,AB=2,以O为圆心,OA为半径画圆,请按下列步骤完成作图,并回答问题:①过点A作切线AC,且AC=4(点C在A的下方);②连接OC,交⊙O于点D;③连接BD,与AC交于点E.(1)求证:DB为⊙O的切线;(2)求AE的长度.

如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线垂直,垂足为D.连接并延长BC,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.

已知△ABE为直角三角形,∠ABE=90°,BC为圆O的切线,C为切点,CA=CD,则△ABC和△CDE的面积之比为【 】

一个玻璃球体近似半圆O,AB为直径,半圆O上点C处有个吊灯EF,EF//AB,CO⊥AB,EF的中点为D,OA=4. (1)如图①,CM为一条拉线,M在OB上,OM=1.6,DF=0.8,求CD的长度;(2)如图②,一个玻璃镜与圆O相切,H为切点,M为OB上一点,MH为入射光线,NH为反射光线∠OHM=∠OHN=45°,tan∠COH=3/4,求ON的长度;(3)如图③, M是线段OB上的动点,MH为入射光线,∠HOM=50°,HN为反射光线交圆O于点N,在M从O运动到B的过程中,求点N的运动路径长.

如图,AB为⊙O的直径,直线 CD与⊙O 相切于点 C,连接AC,若∠ACD=50°,则∠BAC 的度数为【 】

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.

如图,AB为⨀O的弦,D,C为弧ACB的三等分点,AC//BE. (1)求证:∠A=∠E;(2)若BC=3,BE=5,求CE的长.

一根钢管放在V形架内,其横截面如图所示,钢管的半径是24cm,若ACB=60°,则劣弧AB的长是【 】

如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB=________.

如图,四边形ABCD内接于⨀O,AC为⨀O的直径,∠ADB=∠CDB. (1)试判断△ABC的形状,并给出证明;(2)若AB=√2,AD=1,求CD的长度.

在圆O中,AP=7,BP=3,OP⊥CP,则CP=________.

如图,在⊙O中,AB 为直径,C 为圆上一点,∠BAC 的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=________.

已知在平面直角坐标系中,点A(3,0),B(-3,0),C(-3,8),以线段BC为直径作圆,圆心为E,直线AC交⨀E于点D,连接OD.(1)求证:直线OD是⨀E的切线;(2)点F为x轴上任意一动点,连接CF交⨀E于点G,连接BG.①当tan∠ACF=1/7时,求所有F点的坐标________________(直接写出);②求BG/CF的最大值.

在△ABC中,AB<AC,M为线段BC的中点,N是△ABC的外接圆弧BC(含点A)的中点,∠BAC的角平分线交BC于点D.设M关于直线ND的对称点为M'.若M'在△ABC的内部,且AM'⊥BC,求∠BAC的大小.

如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O 到AB的距离为________.

在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B'C'(B',C'分别是BC的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数,在线段B1C1,B2C2, B3C3中,⊙O的以点A为中心的“关联线段”是__________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是△O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长。

如图,在每个小正方形的边长为1的网格中,圆上的点A,B,C及∠DPF的一边上的点E,F均在格点上.(I)线段EF的长等于________;(Ⅱ)若点M,N分别在射线PD,PF上,满足∠MBN=90°且BM=BN.请用无刻度的直尺,在如图所示的网格中,画出点M,N,并简要说明点M,N的位置是如何找到的(不要求证明)__________.

已知AB为⨀O的直径,AB=6,C为⨀O上一点,连接CA,CB. (I)如图①,若C为弧AB的中点,求∠CAB的大小和AC的长;(Ⅱ)如图②,若AC=2,OD为⨀O的半径,且OD⊥CB,垂足为E,过点D作⨀O的切线,与AC的延长线相交于点F,求FD的长.

某款“不倒翁”(左图)的主视图(右图)中,PA,PB分别与(AMB) ̂所在圆相切于点A,B.若该圆半径是9cm,∠P=40°,则(AMB) ̂的长是【 】