问答题(2016年广东省

如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F。

(1)求证:△ACF∽△DAE;

(2)若S△AOC=√3/4,求DE的长;

(3)连接EF,求证:EF是⊙O的切线。

答案解析

解答过程见word版

讨论

综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A'.连接AA'交BD于点E,连接CA'. (1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⨀O与CD相切,求证:AA'=√3 CA';②如图3,⨀O与CA'相切,AD=1,求⨀O的面积.

如图,在单位长度为1的网格中,点O,A,B均在格点上,OA=3,AB=2,以O为圆心,OA为半径画圆,请按下列步骤完成作图,并回答问题:①过点A作切线AC,且AC=4(点C在A的下方);②连接OC,交⊙O于点D;③连接BD,与AC交于点E.(1)求证:DB为⊙O的切线;(2)求AE的长度.

如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线垂直,垂足为D.连接并延长BC,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.

已知△ABE为直角三角形,∠ABE=90°,BC为圆O的切线,C为切点,CA=CD,则△ABC和△CDE的面积之比为【 】

一个玻璃球体近似半圆O,AB为直径,半圆O上点C处有个吊灯EF,EF//AB,CO⊥AB,EF的中点为D,OA=4. (1)如图①,CM为一条拉线,M在OB上,OM=1.6,DF=0.8,求CD的长度;(2)如图②,一个玻璃镜与圆O相切,H为切点,M为OB上一点,MH为入射光线,NH为反射光线∠OHM=∠OHN=45°,tan∠COH=3/4,求ON的长度;(3)如图③, M是线段OB上的动点,MH为入射光线,∠HOM=50°,HN为反射光线交圆O于点N,在M从O运动到B的过程中,求点N的运动路径长.

如图,AB为⊙O的直径,直线 CD与⊙O 相切于点 C,连接AC,若∠ACD=50°,则∠BAC 的度数为【 】

如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.

如图,☉O是△ABC的外接圆,AC是直径。过点O作线段OD⊥AB于点D,延长DO交☉O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于点F,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长(结果保留π);(2)求证:OD=OE;(3)求证:PF是☉O的切线.

⊙O是△ABC的外接圆,AB是直径,过⏜BC的中点P作⊙O的直径PG交弦BC于点D,连接AG, CP,PB.(1)如图1;若D是线段OP的中点,求∠BAC的度数;(2)如图2,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.

如图,点P是四边形ABCD外接圆⊙O上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD,连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF=________.

如图,已知∠AOX=30°,OA=2,AB⊥OA,AB=OA,则B的坐标为________.

已知△ABC是直角三角形,∠B=90°,AB=3,BC=5,AE=2√5,连接CE,以CE为底作直角三角形CDE,CD=DE. F是AE边上的一点,连接BD,BF,∠FBD=45°,则AF长为________.

有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4√3.将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板AB,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值范围.

如图,△ABC绕点A顺时针旋转45°得到△AB' C'若∠BAC=90°,AB=AC=√2,则图中阴影部分的面积等于________.

如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1)填空:AD=________(cm),DC=________(cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm²),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=(√6+√2)/4,sin15°=(√6-√2)/4)

如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于点D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°,若AC=a,求CI的长.

问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由.问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.

如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是【 】

如图所示,∠AOB是放置在正方形网格中的一个角,则sin⁡∠AOB的值是________.

图①是甘肃省博物馆的镇馆之宝——铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志.在很多旅游城市的广场上都有“马踏飞燕”雕塑.某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕”雕塑最高点离地面的高度测量示意图如图,雕塑的最高点B到地面的高度为BA,在测点C用仪器测得点B的仰角为α,前进一段距离到达测点E,再用该仪器测得点B的仰角为β,且点A,B,C,D,E,F均在同一竖直平面内,点A,C,E在同一条直线上.α的度数β的度数CD的长度仪器CD(EF)的高度测量数据31°42°5米1.5米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:sin⁡3 1°≈0.52,cos⁡3 1°≈0.86,tan⁡3 1°≈0.60,sin⁡4 2°≈0.67,cos⁡4 2°≈0.74,tan⁡4 2°≈0.90)

如图,AB是⊙O的直径,∠BAC=50°,则∠D=【 】

如图,四边形ABCD内接于⨀O,AC为⨀O的直径,∠ADB=∠CDB. (1)试判断△ABC的形状,并给出证明;(2)若AB=√2,AD=1,求CD的长度.

在圆O中,AP=7,BP=3,OP⊥CP,则CP=________.

如图,在⊙O中,AB 为直径,C 为圆上一点,∠BAC 的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=________.

已知在平面直角坐标系中,点A(3,0),B(-3,0),C(-3,8),以线段BC为直径作圆,圆心为E,直线AC交⨀E于点D,连接OD.(1)求证:直线OD是⨀E的切线;(2)点F为x轴上任意一动点,连接CF交⨀E于点G,连接BG.①当tan∠ACF=1/7时,求所有F点的坐标________________(直接写出);②求BG/CF的最大值.

在△ABC中,AB<AC,M为线段BC的中点,N是△ABC的外接圆弧BC(含点A)的中点,∠BAC的角平分线交BC于点D.设M关于直线ND的对称点为M'.若M'在△ABC的内部,且AM'⊥BC,求∠BAC的大小.

如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O 到AB的距离为________.

如图,ΔABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是_______度.

如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD. (1)求证:AD=CD;(2)若AB=4,BF=5,求sin⁡∠ BDC的值.

如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B. (1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC与点;求证:△DCF是等腰三角形.