单项选择(2019年广东省广州市

如图,矩形ABCD中,对角线AC的垂直平分线分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为【 】

A、4√5

B、4√3

C、10

D、8

答案解析

A

【解析】

解答过程见word版

讨论

如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD 和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG; ②GE=GF;③△GDK 和△GKH 的面积相等;④当点F与点 C 重合时,∠DEF=75°其中正确的结论共有【 】

如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1, Rt△BFC的面积为S2, Rt△DCE的面积为S3 , 则S1______ S2+ S3(用“>”、“=”、“<”填空);(2)写出图中的三对相似三角形,并选择其中一对进行证明.

如图,矩形ABCD中,对角线AC=2√3,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B'处,则AB=______.

如图,四边形ABCD是矩形,E,F分别是线段AD,BC上的点,点O是EF与BD的交点.若将△BED沿直线BD对叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB⋅AD=3√3,求EF⋅BD的值.

探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、1/2倍、k倍。(1)若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?________(填“存在”或“不存在”)。(2)继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍?同学们有以下思路:①设新矩形长和宽为x,y,则依题意有x+y=10,xy=12,得x2-10x+12=0,再探究根的情况;根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的1/2倍;②如图也可用反比例函数与一次函数证明l1:y=-x+10 ,l2:y=12/x.那么,a.是否存在一个新矩形为原矩形周长和面积的2倍?________.b.请探究是否有一新矩形周长和面积为原矩形的1/2,若存在,用图像表达:c.请直接写出当结论成立时k的取值范围:____________.

如图1,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP与DC的延长线交于点E.(1)当点P是BC的中点时,求证:△ABP≌△ECP;(2)将△APB沿直线AP折叠得到△APB',点B'落在矩形ABCD的内部,延长PB'交直线AD于点F.①证明FA=FP,并求出在(1)条件下AF的值;②连接B'C,求△PCB'周长的最小值;③如图2,BB'交AE于点H,点G是AE的中点,当∠EAB'=2∠AEB'时,请判断AB与HG的数量关系,并说明理由.

一个矩形周长为56 厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.

木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草阁,并求其周长.

如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.

如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.

如图,点A,B,C在直线l上,PB⊥l,PA=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是______ cm.

如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点 C,D的连线交于点E,则(1)AB与CD是否垂直?______(填是”或否")(2)AE=______.

如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD干点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.

如图,射线OM、ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线0N上,则点A′到射线ON的距离d=________.

下列长度的三条线段与长度为5的线段能组成四边形的是【 】

《淮南子·天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B、A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B处的杆的影子的方向取一点C,使C、B两点间的距离为10步,在点C处立一根杆,取 CA的中点D,那么直线DB表示的方向为东西方向。(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示。使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在图中,确定了直线DB表示的方向为东西方向,根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA=______,D是CA的中点,∴CA⊥DB(__________)(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.

-(-2023)=【 】

一个几何体的三视图如图所示,则它表示的几何体可能是【 】

学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12.下列关于这组数据描述正确的是【 】

下列运算正确的是【 】