问答题(2020年广东省广州市

如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°,求∠BCA的度数.

答案解析

解答过程见word版

讨论

如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.

如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是【 】

如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.

如图,B是AD的中点,BC//DE,BC=DE.求证:∠C=E.

如图,点D,E在△ABC的边BC上,∠B=∠C,BD=CE,求证:△ABD≌△ACE.

在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC延长DC到点E,使得CE=DC. (1)如图(左),延长BC到点F,使得CF=BC,连接AF、EF,若AF⊥EF,求证:BD⊥AF.(2)连接AE,交BD的延长线干点H,连接CH,依题意补全图(右),若AB²=AE²+BD²,用等式表示线段CD与CH的数量关系,并证明.

如图,四边形ABCD中,AD//BC,∠ABC=90°,∠C=30°,AD=3,AB=2√3,DH⊥BC于点H,将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,PM=4√3. (1)求证:△PQM≅△CHD;(2) △PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2点K在BH上,且BK=9-4√3.若△PQM右移的速度为每秒1个单位长,绕点D旅转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).

如图,点E、F在线段BC上,AB//CD,∠A=∠D,BE=CF,证明:AE=DF.

如图,△ABC和△DEF中,AB=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF【 】

如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把ΔADN绕点A顺时针旋转90°得到ΔABE. (1)求证:ΔAEM≌ΔANM.(2)若BM=3,DN=2,求正方形ABCD的边长.