关注优题吧,注册平台账号.
如图,矩形ABCD中,对角线AC=2√3,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B'处,则AB=______.
暂无答案
如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD 和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG; ②GE=GF;③△GDK 和△GKH 的面积相等;④当点F与点 C 重合时,∠DEF=75°其中正确的结论共有【 】
如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1, Rt△BFC的面积为S2, Rt△DCE的面积为S3 , 则S1______ S2+ S3(用“>”、“=”、“<”填空);(2)写出图中的三对相似三角形,并选择其中一对进行证明.
如图,在矩形ABCD中,线段EF,GH分别平行于AD,AB,它们相交于点P,点P1,P2分别在线段PF,PH上,PP1=PG,PP2=PE,连接P1 H,P2 F,P1 H与P2 F交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b. (1)四边形EBHP的面积______四边形GPFD的面积(填“>”、“=”或“<”);(2)求证:△P1 FQ∼△P2 HQ;(3)设四边形PP1 QP2的面积为S1,四边形CFQH的面积为S2,求S1/S2 的值.
如图,已知在矩形ABCD中AB=1,BC=√3,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是【 】
如图,四边形ABCD是矩形,E,F分别是线段AD,BC上的点,点O是EF与BD的交点.若将△BED沿直线BD对叠,则点E与点F重合.(1)求证:四边形BEDF是菱形;(2)若ED=2AE,AB⋅AD=3√3,求EF⋅BD的值.
探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、1/2倍、k倍。(1)若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?________(填“存在”或“不存在”)。(2)继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍?同学们有以下思路:①设新矩形长和宽为x,y,则依题意有x+y=10,xy=12,得x2-10x+12=0,再探究根的情况;根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的1/2倍;②如图也可用反比例函数与一次函数证明l1:y=-x+10 ,l2:y=12/x.那么,a.是否存在一个新矩形为原矩形周长和面积的2倍?________.b.请探究是否有一新矩形周长和面积为原矩形的1/2,若存在,用图像表达:c.请直接写出当结论成立时k的取值范围:____________.
如图1,矩形ABCD中,AB=6,AD=8,点P在边BC上,且不与点B、C重合,直线AP与DC的延长线交于点E.(1)当点P是BC的中点时,求证:△ABP≌△ECP;(2)将△APB沿直线AP折叠得到△APB',点B'落在矩形ABCD的内部,延长PB'交直线AD于点F.①证明FA=FP,并求出在(1)条件下AF的值;②连接B'C,求△PCB'周长的最小值;③如图2,BB'交AE于点H,点G是AE的中点,当∠EAB'=2∠AEB'时,请判断AB与HG的数量关系,并说明理由.
一个矩形周长为56 厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.
木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草阁,并求其周长.
如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.
边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为________.
如图,在▱ABCD 中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.
综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒. 猜想与证明:(1)直接写出纸板上∠ABC 与纸盒上∠A1B1C1的大小关系:(2)证明 (1)中你发现的结论.
如图,在▱ABCD中,一定正确的是【 】
菱形的边长为5,则它的周长为______.
如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a个单位长度得到线段EF,若四边形ECDF为菱形时,a的值为【 】
(1)如图1,在矩形ABCD中,E为AD边上一点,连接BE,①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≅△FCB;②若SABCD=20时,BE⋅CF=________.(2)如图2,在菱形ABCD中,cosA=1/3,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD于点F,若SABCD=24,求EF∙BC的值.(3)如图3,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF∙EG=7√3,请直接写出AG的长.
以下说法正确的是【 】
背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放 (点 E、4、D 在同一条直线上),发现BE=DG且BE⊥DG. 小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向转(如图1),还能得到BE=DG吗?若能请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AE/AG=AB/AD=2/3,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE²+BG²的值是定值,请求出这个定值.
下列说法错误的是【 】
下列出版社的商标图案中,是轴对称图形的为【 】
如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD = 【 】
如图,AB是⊙O的直径,∠BAC=50°,则∠D=【 】
综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A'.连接AA'交BD于点E,连接CA'. (1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⨀O与CD相切,求证:AA'=√3 CA';②如图3,⨀O与CA'相切,AD=1,求⨀O的面积.
下列图形中具有稳定性的是【 】
如图,直线a,b被直线c所截,a//b,∠1=40°,则∠2等于【 】
如图,在△ABC中,BC=4,点D、E分别为AB、AC的中点,则DE=【 】
扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为________.
如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.
如图,四边形ABCD内接于⨀O,AC为⨀O的直径,∠ADB=∠CDB. (1)试判断△ABC的形状,并给出证明;(2)若AB=√2,AD=1,求CD的长度.