两部分重合,理解并掌握如何判断中心对称图形的条件是解题的关键.
3. 计算 的结果是( )
【分析】根据同底数幂的乘法进行计算即可得出结果.
【详解】解: ,故 C 正确. 故选:C.
【点睛】本题主要考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则,是解题的关键.
4. 下列说法正确的是( )
A. 为了解近十年全国初中生的肥胖人数变化趋势,采用扇形统计图最合适
B. “煮熟的鸭子飞了”是一个随机事件
C. 一组数据的中位数可能有两个
D. 为了解我省中学生的睡眠情况,应采用抽样调查的方式
【分析】根据统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查逐项分析判断即可求解.
【详解】解:A. 为了解近十年全国初中生的肥胖人数变化趋势,采用折线统计图最合适,故该选项不正确,不符合题意;
B. “煮熟的鸭子飞了”是一个不可能事件,故该选项不正确,不符合题意;
C. 一组数据的中位数只有 1 个,故该选项不正确,不符合题意;
D. 为了解我省中学生的睡眠情况,应采用抽样调查的方式,故该选项正确,符合题意; 故选:D.
【点睛】本题考查了统计图的选择,随机事件的定义,中位数的定义,抽样调查与普查,掌握相关定义以及统计图知识是解题的关键.必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系.