问答题(2018年广东省广州市

已知抛物线y=x²+mx-2m-4(m>0).

(1)证明:该抛物线与x轴总有两个不同的交点;

(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⨀P上.

①试判断:不论m取任何正数,⨀P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;

②若点C关于直线x=-m/2的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⨀P的半径记为r,求l/r的值.

答案解析

解答过程见word版

讨论

如图,抛物线y=ax²+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为【 】

如图,抛物线y=x²+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ//BC,交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点的坐标.

蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间.如图1,某个温室大棚的横截面可以看作形ABCD和物线AED构成,其中AB=3m,BC=4m,取BC中点O,过点O作线段BC的垂直平分线OE交抛物线AED于点E,若以O点为原点,BC所在直线为x轴,OE为y轴建立如图所示平面直角标系.请回答下列问题:(1)如图2,抛物线AED的顶点E(0,4),求抛物线的解析式;(2)如图3,为了保证蔬菜大棚的通风性该大棚要安装两个正方形孔的排气装置LFGT,SMNR,若FL=NR=0.75m,求两个正方形装置的间距GM的长;(3)如图4,在某一时刻,太阳光线透过A点恰好照射到C点,此时大棚截面的阴影为BK,求BK的长.

如图,抛物线经y=ax²+bx+c过点A(-1,0),C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点D,E为直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.

二次函数y=ax²+bx+c(a≠0)的顶点坐标为(-1,n),其部分图像如下所示,以下结论错误的是【 】

如图1,抛物线y=ax²+bx+3(a≠0)与x轴的交点A(-3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O,B,C的对应点分别为点O',B',C',设平移时间为t秒,当点O'与点A重合时停止移动,记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=9/2作垂线,重足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME-MF=1/4?若存在,请求出F的坐标;若不存在,请说明理由.

二次函数y=1/2 x²,先向上平移6个单位,再向右平移3个单位,用光滑的曲线画在平面直角坐标系上.y=2x² y=2(x-3)²+6(0,0) (3,m)(1,2) (4,8)(2,8) (5,14)(-1,2) (2,8)(-2,8) (1,14)(1) m的值为________.(2)在坐标系中画出平移后的图像并求出y=-1/2 x²+5与y=1/2 x²的交点坐标;(3)点P(x1,y1 ),Q(x2,y2)在新的函数图像上,且P,Q两点均在对称轴的同一侧,若y1>y2,则x1________x2(填“>”或“<”或“=”).

如图,在平面直角坐标系中,抛物线y=1/4 x²+bx+c与x轴交于A,B,与y轴交于C,其中B(3,0),C(0,-3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.

已知二次函数y=x²-2mx+m²-1.(1)当二次函数的图像经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.

二次函数y=ax²+bx+c(a≠0)的大致图像如图所示,关于该二次函数,下列说法错误的是【 】

如图,AB是⊙O的直径,∠BAC=50°,则∠D=【 】

在圆O中,AP=7,BP=3,OP⊥CP,则CP=________.

如图,在⊙O中,AB 为直径,C 为圆上一点,∠BAC 的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=________.

在△ABC中,AB<AC,M为线段BC的中点,N是△ABC的外接圆弧BC(含点A)的中点,∠BAC的角平分线交BC于点D.设M关于直线ND的对称点为M'.若M'在△ABC的内部,且AM'⊥BC,求∠BAC的大小.

如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O 到AB的距离为________.

如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2√3,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为( );(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:DE/DB=√3/3;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是________.

如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF. (1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC·BE=25,求BG的长.

如图,△ABC的内切圆⨀I与BC,CA,AB分别相切于点D,E,F.若⨀I的半径为r,∠A=α,则(BF+CD-BC)和∠FDC的值分别为【 】

如图,在⨀O中,弦AB的长为4√3,点C在⨀O上,OC⊥AB,∠ABC=30°,⨀O所在的平面内有一点P,若OP=5,则点P与⨀O的位置关系是【 】