填空题(2023年重庆市

为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301 个充电桩,第三个月新建了500 个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程________________.

答案解析

301(1+x)²=500

讨论

如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD 的长度为______.

若七边形的内角中有一个角为 100°,则其余六个内角之和为________.

有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是________.

计算:|-5|+(2-√3)0=______.

在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行绝对值运算,称此为“绝对操作”.例如:x-y-|z-m|-n=x-y-z+m-n,|x-y|-z-|m-n|=x-y-z-m+n,…,下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同的运算结果.其中正确的个数是【 】

如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为【 】

如图,AB为⊙O的直径,直线 CD与⊙O 相切于点 C,连接AC,若∠ACD=50°,则∠BAC 的度数为【 】

设D为△ABC的外接圆弧 BC(不含点A)上一点,且满足 AB:AC =DB:DC.设点 B'为B关于 AC 的对称点,点C'为C关于AB 的对称点,点D'为D关于BC的对称点.求证:△BCD与△B'C'D'相似.

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

求所有的正整数组(n,x,y,z,p),其中p为素数,满足 (x²+4y² )(y²+4z² )(z²+4x² )=pn

某商品进价4元,标价5元出售,商家准备打折销售,但其利润率不能少于10%,则最多可打______折.

某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比早到10min,求乙同学骑自行车的速度.

《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?

解方程:1/(x²+x)+1/(x²+3x+2)+1/(x²+5x+6)=3/40

某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设每辆大货车运货x吨,则所列方程正确的是【 】

某商场在世博会上购置A,B两种玩具,其中B玩具单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个 A玩具?

有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度电,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发电多少度?(2)A、B两个发电厂共焚烧90吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A和B总发电量的最大值.

端午节前夕,某商铺用620元购进50个粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,密枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?

张三经营了一家草场,草场里面种植上等草和下等草,他卖五捆上等草的根数减去11根,就等于七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数。设上等草一捆为x根,下等一捆为y根,则下列方程正确的是【 】

某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的电脑的单价比乙种类型的要便宜10元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样,(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少?