问答题(2024年日本

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

答案解析

暂无答案

讨论

设y=-k/(k+1) x+1/(k+1)与x轴,y轴交于A,B(k为正整数),记Sk为S△AOB在对应k时的大小,则S1+S2+⋯+S2023=________.

有九个方格,把1到9这些正整数均填入其中,要使任意相邻的三个格子的和为3的倍数,有______种填法.

有一数列(8项),首项与末项均为1,每一项与前一项比均为1或-1/2, 这种数列有______种.

按如图所示的运算程序,能使输出y值为1的是【】。

如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有______.

观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有______个太阳.

如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形···按这样的规律下去,第7幅图中有______个正方形.

如图,抛物线y=-5/4 x2+17/4 x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点0,点C重合的情况),连接CM,BN,当t为何值时,四边形BCN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.

如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是______.

如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为【 】

设D为△ABC的外接圆弧 BC(不含点A)上一点,且满足 AB:AC =DB:DC.设点 B'为B关于 AC 的对称点,点C'为C关于AB 的对称点,点D'为D关于BC的对称点.求证:△BCD与△B'C'D'相似.

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。

2024 × 2024 方格网中的每个小方格都被染上红、蓝、白三色之一。在每个红色小方格内放置一枚红色棋子,在每个蓝色小方格内放置一枚蓝色棋子。此外,对于白色小方格,若它与至少一个蓝色小方格有公共边或公共顶点,则在其中放置一枚蓝色棋子。假设对于任意的 2×2 方格,其中的红色棋子和蓝色棋子个数相同,且均为一个或两个。求白色小方格个数的最大可能值。