填空题(2023年上海中学

设y=-k/(k+1) x+1/(k+1)与x轴,y轴交于A,B(k为正整数),记Sk为S△AOB在对应k时的大小,则S1+S2+⋯+S2023=________.

答案解析

2023/4048(解答过程见word版)

讨论

有九个方格,把1到9这些正整数均填入其中,要使任意相邻的三个格子的和为3的倍数,有______种填法.

有一数列(8项),首项与末项均为1,每一项与前一项比均为1或-1/2, 这种数列有______种.

发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,(2+1)2+(2-1)2=10为偶数,请把10的一半表示为两个正整数的平方和,探究:设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确。

按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是【 】

观察下列等式:第1个等式:a1=1/(1×3)=1/2×(1-1/3);第2个等式:a2=1/(3×5)=1/2×(1/3-1/5);第3个等式:a3=1/(5×7)=1/2×(1/5-1/7);第4个等式:a4=1/(7×9)=1/2×(1/7-1/9);…请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________;(2)用含有n的代数式表示第n个等式:an=________________=________________(n为正数);(3)求a1+a2+a3+⋯+a100的值.

如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是______,它是自然数______的平方,第8行共有______数;(2)用含n的代数式表示:第n行的第一个数是______,最后一个数是______,第n行共有______个数;(3)求第n行各数之和.

观察下列算式,用你所发现的规律得出22015的末位数字是【 】21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…

阅读下列材料:1×2=1/3·(1×2×3-0×1×2),2×3=1/3·(2×3×4-1×2×3),3×4=1/3·(3×4×5-2×3×4),由以上三个等式相加,可得:1×2+2×3+3×4=1/3×3×4×5=20.读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+⋯+10×11(写出过程);(2) 1×2+2×3+3×4+n×(n+1)=____________;(3) 1×2×3+2×3×4+3×4×5+⋯+7×8×9=____________.

已知x=1/(√3+√2),y=1/(√3-√2),求x²+y².

如图,已知∠AOX=30°,OA=2,AB⊥OA,AB=OA,则B的坐标为________.

按如图所示的运算程序,能使输出y值为1的是【】。

下列命题中,为真命题的是【 】(1)对角线互相平分的四边形是平行四边形(2)对角线互相垂直的四边形是菱形(3)对角线相等的平行四边形是菱形(4)有一个角是直角的平行四边形是矩形

下列命题是真命题的有 【 】①对顶角相等;②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等;④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧.

如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形···按这样的规律下去,第7幅图中有______个正方形.

下面哪一个是假命题【 】

下面命题正确的是【 】

下列命题是真命题的个数有【 】①垂直于半径的直线是圆的切线②平分弦的直径垂直于弦③若是方程x-ay=3的一个解,则a=-1④若反例函数y=-3/x的图像上有两点(1/2,y1),(1,y2),则y1≤y2.

如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是______.

下列命题①方程x2=x的解是x=1;②4的平方根是2;③有两边和一角相等的两个三角形全等;④连接任意四边形各边中点的四边形是平行四边形;其中正确的个数有【 】

如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为【 】

如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F. (1)当旋转角∠EOF为多少度时,OE=OF;(直接写出结果,不要求写解答过程);(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别为S1,S2,设S=S1-S2,AN=n,求S关于n的函数表达式.

在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是【 】

如图(左)所示,以点M(-1,0)为圆心的圆与y轴,x轴分别交于点A,B,C,D,直线y=-/3 x-5/3与⊙M相切于点H,交x轴于点E,交y轴于点F. (1)请直接写出OE,⊙M的半径r,CH的长;(2)如图(中)所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图(右)所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦AT交ⅹ轴于点N.是否存在一个常数a,始终满足MN•MK=a,如果存在,请求出a的值;如果不存在,请说明理由.

已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是【 】

抛物线y=x2-1交x轴于A,B两点(A在B的左边),(1) ▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上.①如图(1),若点C的坐标是(0,3),点E的横坐标是5,直接写出点A,D的坐标;②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+FH的值是定值.

在平面直角坐标系xOy中,点M(-4,2)关于x轴对称的点的坐标是【 】

如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是【 】

某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是【 】

如图,平面直角坐标系中,线段AB的端点为A(-8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD其中C(c,0).当c=2时,会从c处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系:2当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.

如图,点A(0,3)、B(1,0),将线段AB平移得到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是【 】