单项选择(2019年广东省广州市

如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=2/5,则此斜坡的水平距离AC为【 】

A、75m

B、50m

C、60m

D、12m

答案解析

A

讨论

广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处,到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是【 】

广东省广州市绝对值

平面直角坐标系xOy中,抛物线G:y=ax²+bx+c(0<a<12)过点A(1,c-5a),B(x1,3),C(x2,3).顶点D不在第一象限,线段BC上有一点E,设△OBE的面积S1,△OCE的面积为S2,S1=S2+3/2.(1)用含a的式子表示b;(2)求点E的坐标;(3)若直线DE与抛物线G的另一个交点F的横坐标为6/a+3,求y=ax²+bx+c在1<x<6时的取值范围(用含a的式子表示).

如图,⨀O为等边△ABC的外接圆,半径为2,点D在劣弧(AB) ̂上运动(不与A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着D的运动,t的值会发生变化,求所有t值中的最大值.

如图,△ABD中,∠ABD=∠ADB.(1)作点A关于BD的对称点C;(要求:尺规作图,不定作法,保留作图痕迹)(2)在(1)所作的图中,连接BC,DC,连接AC交BD于点Q.①求证:四边形ABCD是菱形;②取BC的中点E,连接OE,若OE=13/2,BD=10,求点E到AD的距离.

粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.

如图,在平面直角坐标系xOy中,▱OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=k/x(x>0)的图象过点A(3,4)和点M.(1)求k的值和点M的坐标;(2)求▱OABC的周长.

为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:甲社区 67 68 73 75 76 78 80 82 83 84 85 85 90 92 95乙社区 66 69 72 74 75 78 80 81 85 85 88 89 91 96 98根据以上信息解答下列问题:(1)求甲社区老人年龄的中位数和众数;(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.

已知反比例函数y=k/x的图象分别位于第二、四象限,化简:k²/(k-4)-16/(k-4)+√((k+1)²-4k).

如图,AB=AD,∠BAC=∠DAC=25°,∠D=80°,求∠BCA的度数.

2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名员顺利进驻中国空间站.如图中的照片展示了中国空间站上机械臂的一种工作状态.当两臂AC=BC=10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

sin30°的值为______.

爬坡时坡面与水平面夹角为α,则每爬1m耗能(1.025-cosα)J,若某人爬了1000m,该坡角为30°,则他耗能【 】(参考数据:√3≈1.732,√2≈1.414)

如图所示,某施工队要测量隧道长度BC,AD=600米,AD⊥BC,施工队站在点D处看向B,测得仰角为45°,再由D走到E处测量,DE//AC,DE=500米,测得仰角为53°,求隧道BC的长.(sin53°≈4/5,cos53°≈3/5,tan53°≈4/3).

如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为【 】

人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?

在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=________.

如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A.B.D三点在同一直线上)。请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m)。(参考数据:√2≈1.414,√3≈1.732)

如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是【 】

中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献. 为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN充电站的平面示意图,矩形 ABCD 是其中一个停车位,经测量,∠ABQ=60°,AB=5.4m,CE=1.6m,GH⊥CD,GH是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m,参考数据√3≈1.73)(1) 求PQ的长;(2) 该充电站有 20 个停车位,求PN的长.

如图,抛物线y=ax²+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为【 】

某蓄电池的电压为48V,使用此电池时,电流I(单位:A)与电阻R(单位:Ω)的函数表达式为I=48/R.当R=12Ω时,I的值为______A.

已知一次函数y=kx+b的图像经过点(0,1)与点(2,5),求该一次函数的表达式.

如图1,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上.如图2,将正方形OABC绕O逆时针旋转,旋转角为α(0°<α<45°),AB交直线y=x于点E,BC交y轴于点F. (1)当旋转角∠EOF为多少度时,OE=OF;(直接写出结果,不要求写解答过程);(2)若点A(4,3),求FC的长;(3)如图3,对角线AC交y轴于点M,交直线y=x于点N,连接FN.将△OFN与△OCF的面积分别为S1,S2,设S=S1-S2,AN=n,求S关于n的函数表达式.

在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是【 】

点(1,y1 ),(2,y2 ),(3,y3 ),(4,y4)在反比例函数y=4/x图像上,则y1,y2,y3,y4中最小的是【 】

水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长 C与r的关系式为C=2πr下列判断正确的是【 】

物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系:x 0 2 5y 15 19 25(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.

如图,抛物线y=x²+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ//BC,交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点的坐标.

如下左图,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP长与运动时间t(单位:s)的关系如右图,则AC的长为【 】