问答题(2016年广东省

如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA,QD,并过点Q作QO⊥BD,垂足为O,连接OA,OP.

(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形? 

(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;

(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数关系式,并求出y的最大值。

  

答案解析

解答过程见word版

讨论

如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F。(1)求证:△ACF∽△DAE;(2)若S△AOC=√3/4,求DE的长;(3)连接EF,求证:EF是⊙O的切线。

如图,在直角坐标系中,直线y=kx+1(k≠0)与双曲线y=2/x(x>0)相交于P(1,m).(1)求k的值;(2)若点Q与点P关于y=x成轴对称,则点Q的坐标为Q( );(3)若过P、Q两点的抛物线与y轴的交点为N(0,5/3),求该抛物线的解析式,并求出抛物线的对称轴方程.

某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球,乒乓球,篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育项目的学生人数,随机抽取了部分学生进行调查,并将通过点差获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题:(1)这次活动一共调查了 250 名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于108度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是480人.

如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于点D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°,若AC=a,求CI的长.

某工程队修建一条1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?

如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连接DE (保留作图痕迹,不要求写作法);(2)在(1)条件下,若DE=4,求BC的长.

先化简,再求值:(a+3)/a⋅6/(a²+6a+9)+(2a-6)/(a²-9),其中a=√3-1.

计算:|-3|-(2016+sin⁡30°)0-(-1/2)-1

如图,点P是四边形ABCD外接圆⊙O上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD,连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF=________.

如图,矩形ABCD中,对角线AC=2√3,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B'处,则AB=______.

边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为________.

如图,在▱ABCD 中,∠DAB=30°.(1)实践与操作:用尺规作图法过点D作AB边上的高DE;(保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,AD=4,AB=6,求BE的长.

综合与实践主题:制作无盖正方体形纸盒.素材:一张正方形纸板步骤1:如图1,将正方形纸板的边长三等分,画出九个相同的小正方形,并剪去四个角上的小正方形;步骤2:如图2,把剪好的纸板折成无盖正方体形纸盒. 猜想与证明:(1)直接写出纸板上∠ABC 与纸盒上∠A1B1C1的大小关系:(2)证明 (1)中你发现的结论.

如图,在▱ABCD中,一定正确的是【 】

菱形的边长为5,则它的周长为______.

如图,在平行四边形ABCD中,AB=4,BC=6,将线段AB水平向右平移a个单位长度得到线段EF,若四边形ECDF为菱形时,a的值为【 】

(1)如图1,在矩形ABCD中,E为AD边上一点,连接BE,①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≅△FCB;②若SABCD=20时,BE⋅CF=________.(2)如图2,在菱形ABCD中,cosA=1/3,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD于点F,若SABCD=24,求EF∙BC的值.(3)如图3,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF∙EG=7√3,请直接写出AG的长.

以下说法正确的是【 】

如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD 和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG; ②GE=GF;③△GDK 和△GKH 的面积相等;④当点F与点 C 重合时,∠DEF=75°其中正确的结论共有【 】

背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放 (点 E、4、D 在同一条直线上),发现BE=DG且BE⊥DG. 小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向转(如图1),还能得到BE=DG吗?若能请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AE/AG=AB/AD=2/3,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE²+BG²的值是定值,请求出这个定值.