填空题(2022年北京市

甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A、B、C、D、E,每个包裹的重量及包裹中Ⅰ号、Ⅱ号产品的重量如下:

包裹编号 Ⅰ号产品重量/吨 Ⅱ号产品重量/吨 包裹的重量/吨

A 5 1 6

B 3 2 5

C 2 3 5

D 4 3 7

E 3 5 8

甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.

(1)如果装运的I号产品不少于9吨,且不多于11吨,写出一中满足条件的装运方案______(写出要装运包裹的编号);

(2)如果装运的1号产品不少于9吨,且不多于11吨,同时装运的II号产品最多,写出满足条件的装运方案______(写出要装运包裹的编号).

答案解析

(1).ABC(或ABE或AD或ACD或BCD) (2).ABE或BCD

【解析】

(1)根据题意,

选择ABC时,装运的I号产品重量为:5+3+2=10(吨),总重6+5+5=16<19.5(吨),符合要求;

选择ABE时,装运的I号产品重量为:5+3+3=11(吨),总重6+5+8=19<19.5(吨),符合要求;

选择AD时,装运的I号产品重量为:5+4=9(吨),总重6+7=13<19.5(吨),符合要求;

选择ACD时,装运的I号产品重量为:5+2+4=11(吨),总重6+5+7=18<19.5(吨),符合要求;

选择BCD时,装运的I号产品重量为:3+2+4=9(吨),总重5+5+7=17<19.5(吨),符合要求;

选择DCE时,装运的I号产品重量为:4+2+3=9(吨),总重7+5+8=20>19.5(吨),不符合要求;

选择BDE时,装运的I号产品重量为:3+4+3=10(吨),总重5+7+8=20>19.5(吨),不符合要求;

综上,满足条件的装运方案有ABC或ABE或AD或ACD或BCD.

故答案为:ABC(或ABE或AD或ACD或BCD).

(2)选择ABC时,装运的II号产品重量为:1+2+3=6(吨)

选择ABE时,装运的II号产品重量为:1+2+5=8(吨);

选择AD时,装运的II号产品重量为:1+3=4(吨);

选择ACD时,装运的II号产品重量为:1+3+3=7(吨);

选择BCD时,装运的II号产品重量为:2+3+3=8(吨);

故答案为:ABE或BCD.

讨论

已知a<b,下列式子不一定成立的是【 】

已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是【 】

如图,点O在直线AB上OC⊥OD.若∠AOC=120°,则∠BOD的大小为【 】.

在平面直角坐标系xOy中,若反比例函数y=k/x(k≠0)的图像经过点A(1,2)和点B(-1,m),则m的值为______.

如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB=________.

《淮南子·天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B、A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B处的杆的影子的方向取一点C,使C、B两点间的距离为10步,在点C处立一根杆,取 CA的中点D,那么直线DB表示的方向为东西方向。(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示。使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在图中,确定了直线DB表示的方向为东西方向,根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA=______,D是CA的中点,∴CA⊥DB(__________)(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.

已知关于x的一元二次方程x2-4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.

如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接并延长OB,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.

在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B'C'(B',C'分别是BC的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数,在线段B1C1,B2C2, B3C3中,⊙O的以点A为中心的“关联线段”是__________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是△O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长。

如图,利用工具测量角,则∠1的大小为【 】