关注优题吧,注册平台账号.
方程2/(x+5)=1/x的解为__________.
x=5
【解析】
2x=x+5
分解因式:xy2-x=________.
若在实数范围内有意义,则实数x的取值范围是__________.
下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x;其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是【 】
下图为轴对称图形,该图形的对称轴的条数为【 】
若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为【 】
不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是【 】
实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是【 】
如图,利用工具测量角,则∠1的大小为【 】
截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨,将262 883 000 000用科学计数法表示应为【 】
下面几何体中,是圆锥的为【 】
解分式方程:2x/(x+1)+3/(x-1)=2
解方程2/(x+1)+1=x/(x-1).
分式方程(2-x)/(x-3)+1/(3-x)=1的解为【 】
2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势。经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元,若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费。
分式方程2/(x-1)-1=0的解是【 】
某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的3/5.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.
分式方程(x-1)/x=0的解为x=__________.
随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为【 】
对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3==.则方程 x⊗(-2)= -1的解是【 】
分式方程2x/(x+1)=1的解x=__________.
广东省二元一次方程组
若+|b+1|=0,则(a+b)2020=_________.
已知x=5-y,xy=2,计算3x+3y-4xy的值为_________.
已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.
某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?
某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?
一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变.两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是【 】
某公司上半年生产甲、乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是【 】
江苏省苏州市二元一次方程组
二元一次方程组的解为________.