单项选择(2022年天津市

方程x2+4x+3=0的两个根为【 】

A、x1=1,x2=3

B、x1=-1,x2=3

C、x1=1,x2=-3

D、x1=-1,x2=-3

答案解析

D

【解析】

∵x2+4x+3=(x+1)(x+3)=0

∴x1=-1,x2=-3.

讨论

在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元,市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.

设x1,x2是关于x的方程x2-3x+k=0的两个根,且x1=2x2,则k=________.

下列方程没有实数根的是【 】

若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是【 】

若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足 -3<x1<-1,1<x2<3,则符合条件的一个方程为____________.

已知方程x2+mx-3=0的一个根是1,则m的值为________.

方程x2-4x=0的实数解是__________.

一元二次方程x2-4x+m=0有两个相等的实数根,点A(x1,y1 ),B(x2,y2)是反比例函数y=m/x上的两个点,若x1<x2<0,则y1______ y2(填“<”或“>”或“=”).

给出一种运算:对于函数y=xn,规定y'=nxn-1.例如:若函数y=x4则有y'=4x3.已知函数y=x3,则方程y'=12的解是【 】

一个三角形的两边长分别为2和5,第三边长是方程x2-8x+12=0的根,则该三角形的周长为_______.

某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的3/5.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.

分式方程(x-1)/x=0的解为x=__________.

随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为【 】

某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?

对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3==.则方程 x⊗(-2)= -1的解是【 】

某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个,下列方程正确的是【 】

分式方程2x/(x+1)=1的解x=__________.

某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?

广东省二元一次方程组

某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程式为【 】