单项选择(2020年贵州省贵阳市

下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是【 】

A、

B、

C、

D、

答案解析

C

讨论

下列图形既是中心对称又是轴对称图形的是【 】

如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为【 】

下列图形中,是中心对称图形,但不是轴对称图形的是【 】

北京冬奥会和冬残奥会组委会收到来自全球的会徽设计方案共4506件,其中很多设计方案体现 了对称之美,以下4幅设计方案中,既是轴对称图形又是中心对称图形的是【 】

如图,将ΔABC先向右平移3个单位,再绕原点O旋转180°得到ΔA'B'C',则点A的对应点A'的坐标是【 】

如图,在Rt△ABC中,∠ACB=90°,AB=5cm,BC=3cm,将△ABC绕点A按逆时针方向旋转90°得到△ADE,连接CD.点P从点B出发,沿BA方向匀速运动,速度为1cm/s,同时,点Q从点A出发,沿AD方向匀速运动,速度为1m/s. PQ交AC于点F,连接CP,EQ,设运动时间为t(s)(0<t<5).解答下列问题:(1)当EQ⊥AD时,求t的值;(2)设四边形PCDQ的面积为S(cm^2),求S与t之间的函数关系式;(3)是否存在某一时刻t,使PQ//CD?若存在,求出t的值;若不存在,请说明理由.

2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园。六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是【 】

下图为轴对称图形,该图形的对称轴的条数为【 】

如图,是轴对称图形但不是中心对称图形的是【 】

下列图形中,是轴对称图形的是【 】

下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是【 】

某正方体的每个面上都有一个汉字,如图是它的一种表面展开图,那么在原正方体中,与“伏”字所在面相对面上的汉字是【 】

下列几何体中,其俯视图与主视图完全相同的是【 】

如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点.矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.

将如图所示的长方体牛奶包装盒沿某些棱剪开且使六个面连在一起然后铺平则得到的图形可能是【 】

神奇的自然界处处蕴含着数学知识,动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的【 】

如图是由 个小正方体组合成的几何体,该几何体的俯视图是【 】

下图是由一个长方体和一个圆锥组成的几何体,它的主视图是【 】

如图,在 的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.

如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是【 】

如图,AB为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行°健步走公益活动,小宇在点A处时,某艘海上观光船位于小宇北偏东68°的点C处,观光船到滨海大道的距离CB为200米。当小宇沿滨海大道向东步行200米到达点E时,观光船沿北偏西40°的方向航行至点D处.此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D处的距离。(参考数据:sin40°≈0.64,co40°≈0.77,tan40°≈0.84,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择【 】

要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量,两同学提供了如下间接测量方案(如图1和图2):对于方案I、Ⅱ,说法正确的是【 】方案I①作一直线GH,交AB,CD于点E,F;②利用尺规作∠HFN=∠CFG;③测量∠AEH的大小即可.方案 Ⅱ①作一直线GH,交AB,CD于点E,F;②测量∠AEH和∠CFG的大小;③计算180°-∠AEH-∠CFG即可.

平面内,将长分别为 1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是【 】

如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A,B的连线与钉点 C,D的连线交于点E,则(1)AB与CD是否垂直?______(填是”或否")(2)AE=______.

如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE//CB,则∠DAB的度数为【 】

如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在(AB) ̂上的C处,图中阴影部分的面积为【 】

如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD干点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.

下图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是【 】

如图,直线m//n,△ABC是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若∠1=140° ,则∠2的度数是【 】