填空题(2023年上海中学

已知a+1/b=3,b+1/c=17,c+1/a=11/25,求abc=________.

答案解析

1(解答过程见word版)

讨论

如图,已知∠AOX=30°,OA=2,AB⊥OA,AB=OA,则B的坐标为________.

已知x=1/(√3+√2),y=1/(√3-√2),求x²+y².

如图,抛物线y=x²+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ//BC,交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点的坐标.

如图,四边形ABCD内接于⨀O,AC为⨀O的直径,∠ADB=∠CDB. (1)试判断△ABC的形状,并给出证明;(2)若AB=√2,AD=1,求CD的长度.

为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10,4,7,5,4,10,5,4,4,18,8,3,5,10,8.(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?均月销售额(平数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?

物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系:x 0 2 5y 15 19 25(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.

《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?

如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.

先化简,再求值:a+(a²-1)/(a-1),其中a=5.

广东省一元一次不等式组

单项式3xy的系数为______.

先化简,再求值:(1+2/(a+1))÷(a2+6a+9)/(a+1),其中a=√3-3.

为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目。经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为________________.

如图,棋盘旁有甲、乙两个围棋盒.(1)甲盒中都是黑子,共10个,乙盒中都是白子,共8个,嘉嘉从甲盒拿出a个黑子放入乙盒,使乙盒棋子总数是甲盒所剩棋了数的2倍,则a=______;(2)设甲盒中都是黑子,共m(m>2)个,乙盒中都是白子,共2m个,嘉嘉从甲盒拿出a(1<a<m)个黑子放入乙盒中,此时乙盒棋子总数比甲盒所剩棋子数多________个;接下来,嘉嘉又从乙盒拿回a个棋子放到甲盒,其中含有x(0<x<a)个白子,此时乙盒中有y个黑子,则y/x的值为______.

整式3(1/3-m)的值为p.(1)当m=2时,求p的值;(2)若p的取值范围如图所示,求m的负整数值.

若代数式x+1的值为6,则x等于【 】

已知x2+2x-2=0,求代数式x(x+2)+ (x+1)2的值.

小朱要到距家 1500 米的学校上学,一天,小朱出发 10 分钟后,小朱的爸爸立即去追小朱,且在距离学校 60 米的地方追上了他。已知爸爸比小朱的速度快 100 米/分,求小朱的速度。若设小朱速度是x米/分,则根据题意所列方程正确的是【 】

下列运算正确的是【 】

先化简,再求值:(x/(x-1)-1)÷(x²+2x+1)/(x²-1),其中x=2.