单项选择(2017年秋程序员软考)

对下图所示的二叉树进行中序遍历(左子树、根结点、右子树)的结果是【 】。

A、5 2 3 4 6 1

B、2 5 3 4 1 6

C、2 4 6 5 3 1

D、2 5 4 3 6 1

答案解析

D

讨论

如果只考虑有序树的情形,那么具有7个结点的不同形态的树共有【】

已知一棵度为m的树中有N1个度为1的结点,N2个度为2的结点,...,Nm个度为m的结点。试问该树中有多少个叶子结点?

某二又树的先序遍历序列为 ABCDFGE,中序遍历序列为 BAFDGCE。以下关于该二又树的叙述中,正确的是【 】。

对于一般的树结构,可以采用孩子-兄弟表示法,即每个结点设置两个指针域,一个指针(左指针)指示当前结点的第一个孩子结点,另一个指针(右指针)指示当前结点的下一个兄弟结点。某树的孩子-兄弟表示如下图所示。以下关于结点 D 与 E 的关系的叙述中,正确的是【 】。

树是结点的集合,它的根结点数目是【 】

算术表达式a+(b-c)*d的后缀式是【 】(-、+、*表示算术的减、加、乘运算,运算符的优先级和结合性遵循惯例)。

在解决计算机与打印机之间速度不匹配的问题时,通常设置一个打印数据缓冲区,计算机将要输出的数据依次写入该缓冲区,而打印机则依次从该缓冲区取出数据。因此,该缓冲区的数据结构应该是【 】。

已知字符串s='(X+Y)*Z',其中,单引号不是字符串的内容,经过以下运算后,t3的值是【 】。t1= SubString(s,3,1)t2=Concat('XY', t1)t3=Replace(s,SubString(s,1,5),t2)注: SubString(s,k,n)表示从串s的第k个字符开始取出长度为n的子串, Concat(s,t)表示将串t连接在s之后, Replace(s,t,r)表示用r替换串s中的子串t。

对于顺序栈和链栈,【 】不是两者共有的运算特征。

若元素a、b、c、d、e、f依次进栈,允许进栈、出栈操作交替进行。但不允许连续三次进行出栈工作,则不可能得到的出栈序列是【 】。

由二叉树的前序和后序遍历序列【 】唯一地确定这棵二叉树。

具有7个结点的互不相识的二叉树共有__________棵。

一个深度为 h 的满 m 叉树有如下性质:第 h 层上的结点都是叶结点,其各层上每个结点有 m 棵非空子树。问:(1)第 k 层最多有多少个结点?(k≤h )(2)整棵树最多有多少个结点?(3)若按层次从上到下,每层从左到右的顺序从1开始对全部结点编号,编号为 i 的结汽的双亲结点的编号是什么?编号为 i 的结点的第 j 个孩子结点(若存在)的编号是什么?

证明,由一棵二叉树的前序序列和中序序列可唯一地确定这棵二叉树。设一棵二叉树的前序序列为ABDGECFH,中序序列为DGBEAFHC,试画出该二叉树。

已知一棵二叉树的前序遍历结果是ADCEBFIHGJ,中序遍历结果是CDEBAFHGIJ,试画出这棵二叉树。

用一维数组存放的一棵完全二叉树如下:A、B、C、D、E、F、G、H、I、J、K、L写出后序遍历该二叉树时访问结点的顺序。

在数据结构中,【 】是与存储结构无关的术语。

已知某二叉树的先序遍历序列为ABCD,后序遍历序列为CDBA,则该二叉树为【 】。

阅读以下说明和C函数,填补代码中的空缺(1)~(6)。二叉树的宽度定义为含有结点数最多的那一层上的结点数。函数 GetWidth()用于求二叉树的宽度。其思路是根据树的高度设置一个数组 counter[], counter[i]存放第i层上的结点数,并按照层次顺序来遍历二又树中的结点,在此过程中可获得每个结点的层次值,最后从counter[]中取出最大的元素就是树的宽度。按照层次顺序遍历二叉树的实现方法是借助一个队列,按访问结点的先后顺序来记录结点,离根结点越近的结点越先进入队列,具体处理过程为:先令根结点及其层次号(为1)进入初始为空的队列,然后在队列非空的情况下,取出队头所指示的结点及其层次号,然后将该结点的左子树根结点及层次号入队列(若左子树存在),其次将该结点的右子树根结点及层次号入队列(若右子树存在),然后再取队头,重复该过程直至完成遍历。设二叉树采用二叉链表存储,结点类型定义如下:typedef struct BTNode{ TElemType data; struct BTNode *left, *right;}BTNode, *BiTree;队列元素的类型定义如下:typedef struct{ BTNode *ptr; int LevelNumber;}QElemType;Get Width()函数中用到的函数原型如下所述,队列的类型名为 QUEUE:InitQueue(QUEUE *Q):初始化一个空队列,成功时返回值为1,否则返回值0isEmpty(QUEUE Q):判断队列是否为空,是空则为1,否则为0EnQueue( QUEUE*Q, QElemType a):将元素a加入队列,成功返回值为1,否则返回值0DeQueue(QUEUE *Q, QElemType *):删除队头元素,并通过参数带回其值,成功则返回值1,否则返回值0GetHeight (BiTree root):返回值为二叉树的高度(即层次数,空二叉树的高度为0)int Getwidth(BiTree root){ QUEUE Q; QElemType a, b; int width,height= GetHeight(root); int i, *counter =(int *)calloc(height+1, sizeof (int)); if(__(1)__) return -1;/*申请空间失败*/ if(! root) return 0;/*空树的宽度为0*/ if(__(2)__) return -1;/*初始化队列失败时返回*/ a.ptr= root; a.LevelNumber=1; if(! EnQueue(&Q,a)) return -1;/*元素入队列操作失败时返回*/ while (! isEmpty(Q)){ if(__(3)__)return -1;/*出队列操作失败时返回*/ counter[b. LevelNumber]++;/*对层号为b. LevelNumber的结点计数*/ if(b.ptr->left){/*若左子树存在,则左子树根结点及其层次号入队*/ a.ptr= b.ptr->left; a.LevelNumber=__(4)__; if(!EnQueue(&Q,a)) return -1; } if(b.ptr-> right){/*若右子树存在,则右子树根结点及其层次号入队*/ a.ptr= b.ptr->right; a. LevelNumber=__(5)__; if(! EnQueue(&Q,a)) return -1; } } width= counter[1]; for(i=1; i< height +1; 1++)/*求 counter[]中的最大值*/ if(__(6)__)width= counter [i]; free(counter); return width;}

与算术表达式3-(2+7)/4对应的二又树为【 】。