问答题(1996年浙江大学)

证明,由一棵二叉树的前序序列和中序序列可唯一地确定这棵二叉树。

设一棵二叉树的前序序列为ABDGECFH,中序序列为DGBEAFHC,试画出该二叉树。

答案解析

二叉树

讨论

已知一棵度为m的树中有N1个度为1的结点,N2个度为2的结点,...,Nm个度为m的结点。试问该树中有多少个叶子结点?

一个深度为 h 的满 m 叉树有如下性质:第 h 层上的结点都是叶结点,其各层上每个结点有 m 棵非空子树。问:(1)第 k 层最多有多少个结点?(k≤h )(2)整棵树最多有多少个结点?(3)若按层次从上到下,每层从左到右的顺序从1开始对全部结点编号,编号为 i 的结汽的双亲结点的编号是什么?编号为 i 的结点的第 j 个孩子结点(若存在)的编号是什么?

具有7个结点的互不相识的二叉树共有__________棵。

如果只考虑有序树的情形,那么具有7个结点的不同形态的树共有【】

由二叉树的前序和后序遍历序列【 】唯一地确定这棵二叉树。

对于前序遍历和中序遍历结果相同的二叉树为__________;对于前序遍历和后序遍历结果相同的二叉树是为__________。一般二叉树只有根结点的二叉树要结点无左孩子的二叉树根结点无右孩子的二叉树所有结点只有左子树的二叉树所有结点只有右子树的二叉树

对下列二叉树进行后序遍历的结果是【 】

支持子程序调用的数据结构是【 】。

某二叉树有5个度为2的结点,则该二叉树中的叶子结点数是【 】。

一棵二叉树有10个度为1的结点,7个度为2的结点,则该二叉树共有结点个数为【 】。

已知一棵二叉树前序遍历和中序遍历分别为ABDEGCFH和DBGEACHF,则该二叉树的后序遍历为【 】

一棵二叉树的中序遍历结果为DBEAFC,前序遍历结果为ABDECF,则后序遍历结果为 __________。

深度为5的满二叉树有__________个叶子结点。

某二叉树共有7个结点,其中叶子结点只有1个,则该二叉树的深度为(假设根结点在第1层)【 】

已知一棵二叉树的树形如图,若其后序遍历为 f、d、b、e、c、a,则其先序列为【 】

某二叉树中度为2的结点有18个,则该二叉树中有__________个叶子结点。

在深度为7的满二叉树中,叶子结点的个数为【 】

若二叉树采用二叉链表存储结构,要交换其所有分支结点左右子树的位置,利用【 】遍历方法最合适。

已知一棵二叉树,如果先序遍历的顺序是ADCEFGHB,中序遍历的顺序是CDFEGHAB,则后序遍历的结果为【 】。

阅读以下说明和C函数,填补代码中的空缺(1)~(6)。二叉树的宽度定义为含有结点数最多的那一层上的结点数。函数 GetWidth()用于求二叉树的宽度。其思路是根据树的高度设置一个数组 counter[], counter[i]存放第i层上的结点数,并按照层次顺序来遍历二又树中的结点,在此过程中可获得每个结点的层次值,最后从counter[]中取出最大的元素就是树的宽度。按照层次顺序遍历二叉树的实现方法是借助一个队列,按访问结点的先后顺序来记录结点,离根结点越近的结点越先进入队列,具体处理过程为:先令根结点及其层次号(为1)进入初始为空的队列,然后在队列非空的情况下,取出队头所指示的结点及其层次号,然后将该结点的左子树根结点及层次号入队列(若左子树存在),其次将该结点的右子树根结点及层次号入队列(若右子树存在),然后再取队头,重复该过程直至完成遍历。设二叉树采用二叉链表存储,结点类型定义如下:typedef struct BTNode{ TElemType data; struct BTNode *left, *right;}BTNode, *BiTree;队列元素的类型定义如下:typedef struct{ BTNode *ptr; int LevelNumber;}QElemType;Get Width()函数中用到的函数原型如下所述,队列的类型名为 QUEUE:InitQueue(QUEUE *Q):初始化一个空队列,成功时返回值为1,否则返回值0isEmpty(QUEUE Q):判断队列是否为空,是空则为1,否则为0EnQueue( QUEUE*Q, QElemType a):将元素a加入队列,成功返回值为1,否则返回值0DeQueue(QUEUE *Q, QElemType *):删除队头元素,并通过参数带回其值,成功则返回值1,否则返回值0GetHeight (BiTree root):返回值为二叉树的高度(即层次数,空二叉树的高度为0)int Getwidth(BiTree root){ QUEUE Q; QElemType a, b; int width,height= GetHeight(root); int i, *counter =(int *)calloc(height+1, sizeof (int)); if(__(1)__) return -1;/*申请空间失败*/ if(! root) return 0;/*空树的宽度为0*/ if(__(2)__) return -1;/*初始化队列失败时返回*/ a.ptr= root; a.LevelNumber=1; if(! EnQueue(&Q,a)) return -1;/*元素入队列操作失败时返回*/ while (! isEmpty(Q)){ if(__(3)__)return -1;/*出队列操作失败时返回*/ counter[b. LevelNumber]++;/*对层号为b. LevelNumber的结点计数*/ if(b.ptr->left){/*若左子树存在,则左子树根结点及其层次号入队*/ a.ptr= b.ptr->left; a.LevelNumber=__(4)__; if(!EnQueue(&Q,a)) return -1; } if(b.ptr-> right){/*若右子树存在,则右子树根结点及其层次号入队*/ a.ptr= b.ptr->right; a. LevelNumber=__(5)__; if(! EnQueue(&Q,a)) return -1; } } width= counter[1]; for(i=1; i< height +1; 1++)/*求 counter[]中的最大值*/ if(__(6)__)width= counter [i]; free(counter); return width;}

树是结点的集合,它的根结点数目是【 】

有n个数顺序(依次)进栈,则出栈顺序有Cn种。Cn=×

与算术表达式3-(2+7)/4对应的二又树为【 】。

对二叉树中的结点如下编号:树根结点编号为1,根的左孩子结点编号为2、右孩子结点编号为3,以此类推,对于编号为i的结点,其左孩子编号为2i、右孩子编号为2i+1。例如,下图所示二又树中有6个结点,结点a、b、c、d、e、f的编号分别为1、2、3、5、7、11。那么,当结点数为n(n>0)的【 】时,其最后一个结点编号为2n-1。

某二又树的先序遍历序列为 ABCDFGE,中序遍历序列为 BAFDGCE。以下关于该二又树的叙述中,正确的是【 】。

对于一般的树结构,可以采用孩子-兄弟表示法,即每个结点设置两个指针域,一个指针(左指针)指示当前结点的第一个孩子结点,另一个指针(右指针)指示当前结点的下一个兄弟结点。某树的孩子-兄弟表示如下图所示。以下关于结点 D 与 E 的关系的叙述中,正确的是【 】。

某二叉树的先序遍历(根、左、右)序列为 EFHIGJK、中序遍历(左、根、右)序列为HFIEJKG,则该二叉树根结点的左孩子结点和右孩子结点分别是【 】

对下图所示的二叉树进行中序遍历(左子树、根结点、右子树)的结果是【 】。

证明一棵二叉树无论进行先序、中序、后序遍历,其叶子结点的相对次序不发生改变。

对二叉排序树进行【 】遍历,可以得到该二叉树所有结点构成的排序序列。