问答题(1996年北京工业大学)

用一维数组存放的一棵完全二叉树如下:

A、B、C、D、E、F、G、H、I、J、K、L

写出后序遍历该二叉树时访问结点的顺序。

答案解析

HIDJKEBLFGCA

讨论

已知一棵二叉树的前序遍历结果是ADCEBFIHGJ,中序遍历结果是CDEBAFHGIJ,试画出这棵二叉树。

证明,由一棵二叉树的前序序列和中序序列可唯一地确定这棵二叉树。设一棵二叉树的前序序列为ABDGECFH,中序序列为DGBEAFHC,试画出该二叉树。

已知一棵度为m的树中有N1个度为1的结点,N2个度为2的结点,...,Nm个度为m的结点。试问该树中有多少个叶子结点?

一个深度为 h 的满 m 叉树有如下性质:第 h 层上的结点都是叶结点,其各层上每个结点有 m 棵非空子树。问:(1)第 k 层最多有多少个结点?(k≤h )(2)整棵树最多有多少个结点?(3)若按层次从上到下,每层从左到右的顺序从1开始对全部结点编号,编号为 i 的结汽的双亲结点的编号是什么?编号为 i 的结点的第 j 个孩子结点(若存在)的编号是什么?

具有7个结点的互不相识的二叉树共有__________棵。

如果只考虑有序树的情形,那么具有7个结点的不同形态的树共有【】

由二叉树的前序和后序遍历序列【 】唯一地确定这棵二叉树。

对于前序遍历和中序遍历结果相同的二叉树为__________;对于前序遍历和后序遍历结果相同的二叉树是为__________。一般二叉树只有根结点的二叉树要结点无左孩子的二叉树根结点无右孩子的二叉树所有结点只有左子树的二叉树所有结点只有右子树的二叉树

对下列二叉树进行后序遍历的结果是【 】

支持子程序调用的数据结构是【 】。

树是结点的集合,它的根结点数目是【 】

有n个数顺序(依次)进栈,则出栈顺序有Cn种。Cn=×

若二叉树采用二叉链表存储结构,要交换其所有分支结点左右子树的位置,利用【 】遍历方法最合适。

证明一棵二叉树无论进行先序、中序、后序遍历,其叶子结点的相对次序不发生改变。

对二叉排序树进行【 】遍历,可以得到该二叉树所有结点构成的排序序列。

二叉树中,具有两个子女的结点的中序后继结点最多只能有一个子女。

阅读以下说明和C函数,填补代码中的空缺(1)~(6)。二叉树的宽度定义为含有结点数最多的那一层上的结点数。函数 GetWidth()用于求二叉树的宽度。其思路是根据树的高度设置一个数组 counter[], counter[i]存放第i层上的结点数,并按照层次顺序来遍历二又树中的结点,在此过程中可获得每个结点的层次值,最后从counter[]中取出最大的元素就是树的宽度。按照层次顺序遍历二叉树的实现方法是借助一个队列,按访问结点的先后顺序来记录结点,离根结点越近的结点越先进入队列,具体处理过程为:先令根结点及其层次号(为1)进入初始为空的队列,然后在队列非空的情况下,取出队头所指示的结点及其层次号,然后将该结点的左子树根结点及层次号入队列(若左子树存在),其次将该结点的右子树根结点及层次号入队列(若右子树存在),然后再取队头,重复该过程直至完成遍历。设二叉树采用二叉链表存储,结点类型定义如下:typedef struct BTNode{ TElemType data; struct BTNode *left, *right;}BTNode, *BiTree;队列元素的类型定义如下:typedef struct{ BTNode *ptr; int LevelNumber;}QElemType;Get Width()函数中用到的函数原型如下所述,队列的类型名为 QUEUE:InitQueue(QUEUE *Q):初始化一个空队列,成功时返回值为1,否则返回值0isEmpty(QUEUE Q):判断队列是否为空,是空则为1,否则为0EnQueue( QUEUE*Q, QElemType a):将元素a加入队列,成功返回值为1,否则返回值0DeQueue(QUEUE *Q, QElemType *):删除队头元素,并通过参数带回其值,成功则返回值1,否则返回值0GetHeight (BiTree root):返回值为二叉树的高度(即层次数,空二叉树的高度为0)int Getwidth(BiTree root){ QUEUE Q; QElemType a, b; int width,height= GetHeight(root); int i, *counter =(int *)calloc(height+1, sizeof (int)); if(__(1)__) return -1;/*申请空间失败*/ if(! root) return 0;/*空树的宽度为0*/ if(__(2)__) return -1;/*初始化队列失败时返回*/ a.ptr= root; a.LevelNumber=1; if(! EnQueue(&Q,a)) return -1;/*元素入队列操作失败时返回*/ while (! isEmpty(Q)){ if(__(3)__)return -1;/*出队列操作失败时返回*/ counter[b. LevelNumber]++;/*对层号为b. LevelNumber的结点计数*/ if(b.ptr->left){/*若左子树存在,则左子树根结点及其层次号入队*/ a.ptr= b.ptr->left; a.LevelNumber=__(4)__; if(!EnQueue(&Q,a)) return -1; } if(b.ptr-> right){/*若右子树存在,则右子树根结点及其层次号入队*/ a.ptr= b.ptr->right; a. LevelNumber=__(5)__; if(! EnQueue(&Q,a)) return -1; } } width= counter[1]; for(i=1; i< height +1; 1++)/*求 counter[]中的最大值*/ if(__(6)__)width= counter [i]; free(counter); return width;}

与算术表达式3-(2+7)/4对应的二又树为【 】。

对二叉树中的结点如下编号:树根结点编号为1,根的左孩子结点编号为2、右孩子结点编号为3,以此类推,对于编号为i的结点,其左孩子编号为2i、右孩子编号为2i+1。例如,下图所示二又树中有6个结点,结点a、b、c、d、e、f的编号分别为1、2、3、5、7、11。那么,当结点数为n(n>0)的【 】时,其最后一个结点编号为2n-1。

某二又树的先序遍历序列为 ABCDFGE,中序遍历序列为 BAFDGCE。以下关于该二又树的叙述中,正确的是【 】。