已知全体实的2维向量关于下列运算构成R上的线性空间V:
(a1,b1 )+(a2,b2 )=(a1+a2,b1+b2+a1 a2),
k∙(a,b)=(ka,kb+(k(k-1))/2 a2).
(1)求V的一组基;
(2)定义变换A(a,b)=(a,a+b),证明:A是一个线性变换;并求A在V的一组基下的矩阵表示.
暂无答案
已知α1=,α2=,α3=,记β1=α1,β2=α2 - kβ1,β3=α3 - l1 β1 - l2 β2,若β1,β2,β3 两两正交,则l1,l2依次为【 】
设A是n×n实对称矩阵,证明:存在一个实数k使得对任意一个实n维向量x都有|x' Ax|≤kx'x,其中x'表示向量x的转置.
设对角矩阵A的特征多项式为 φ(λ)=(λ-λi)ni (诸λi两两互异),求所有和A可交换的矩阵全体所组成的线性空间的维数.
用数学归纳法证明:对于复n维空间Vn上任意多个两两可交换的线性变换所组成的集合S具有公共的特征向量.
已知四维实矢量空间的矢量(表示成矩阵):=,满足如下条件:以及T∙=9/4(其中,T表示对矩阵取置换),试求出所有这样的四维实矢量的集合:{ }=?