单项选择(2018年广东省

在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为【 】

A、1/2

B、1/3

C、1/4

D、1/6

答案解析

C

【解析】

∵点D、E分别为边AB、AC的中点,

∴DE为△ABC的中位线,

∴DE∥BC,

∴△ADE∽△ABC,

∴S△ADE/S△ABC =(DE/BC)²=1/4.

讨论

不等式3x﹣1≥x+3的解集是【 】

下列所述图形中,是轴对称图形但不是中心对称图形的是【 】

数据1、5、7、4、8的中位数是【 】

如图,由5个相同正方体组合而成的几何体,它的主视图是【 】

据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为【 】

四个实数0、1/3、﹣3.14、2中,最小的数是【 】

如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2√3,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为( );(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:DE/DB=√3/3;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

如图,AB是⊙O的直径,AB=4√3,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,AF⊥PC于点F,连接CB.(1)求证:CB是∠ECP的平分线;(2)求证:CF=CE;(3)当CF/CP=3/4时,求劣弧(BC) ̂的长度(结果保留π).

如图,在平面直角坐标系中,抛物线y=-x²+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=-x²+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.

某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:体重频数分布表组边 体重(千克) 人数A 45≤x<50 12B 50≤x<55 mC 55≤x<60 80D 60≤x<65 40E 65≤x<70 16(1)填空:①m=______(直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于______度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?